
Threading in C#
Joseph Albahari

Interested in a book on C# and .NET by the same author?
See www.albahari.com/nutshell/

Table of Contents

Part 1 Getting Started

Overview and Concepts ... 3

How Threading Works ... 5
Threads vs. Processes ... 6
When to Use Threads ... 6
When Not to Use Threads .. 7

Creating and Starting Threads ... 7
Passing Data to ThreadStart ... 8
Naming Threads ... 9
Foreground and Background Threads .. 10
Thread Priority ... 11

Exception Handling .. 12

Part 2 Basic Synchronization .. 14

Synchronization Essentials .. 14

Blocking ... 15

Sleeping and Spinning .. 15
Joining a Thread ... 16

Locking and Thread Safety .. 16
Choosing the Synchronization Object .. 18
Nested Locking .. 18
When to Lock ... 19
Performance Considerations .. 19
Thread Safety ... 20

Interrupt and Abort .. 22

Interrupt .. 22

Abort ... 23

Thread State ... 24

Wait Handles .. 25

AutoResetEvent .. 25
ManualResetEvent ... 29
Mutex ... 29

 2

Semaphore .. 30

WaitAny, WaitAll and SignalAndWait .. 31

Synchronization Contexts .. 32

Reentrancy .. 34

Part 3 Using Threads .. 36

Apartments and Windows Forms .. 36
Specifying an Apartment Model .. 36
Control.Invoke .. 37

BackgroundWorker .. 37

ReaderWriterLockSlim / ReaderWriterLock ... 41
Lock recursion .. 44

Thread Pooling ... 45

Asynchronous Delegates .. 46

Asynchronous Methods .. 48
Asynchronous Events ... 49

Timers .. 49

Local Storage ... 51

Part 4 Advanced Topics .. 52

Non-Blocking Synchronization ... 52
Memory Barriers and Volatility ... 52
Atomicity and Interlocked .. 56

Wait and Pulse ... 58

Wait and Pulse Defined .. 58
How to use Pulse and Wait .. 61
Pulse and Wait Generalized ... 63
Producer/Consumer Queue .. 65
Using Wait Timeouts ... 68
Races and Acknowledgement .. 68
Simulating Wait Handles ... 72
Wait and Pulse vs. Wait Handles ... 73

Suspend and Resume ... 74

Aborting Threads ... 75

Complications with Thread.Abort .. 76
Ending Application Domains ... 78
Ending Processes .. 80

URI: http://www.albahari.com/threading/

© 2006-2009 Joseph Albahari & O'Reilly Media, Inc. All rights reserved

 3

Overview and Concepts
C# supports parallel execution of code through multithreading. A thread is an independent
execution path, able to run simultaneously with other threads.

A C# program starts in a single thread created automatically by the CLR and operating system
(the "main" thread), and is made multi-threaded by creating additional threads. Here's a simple
example and its output:

All examples assume the following namespaces are imported, unless otherwise specified:

using System;
using System.Threading;

class ThreadTest {
 static void Main() {
 Thread t = new Thread (WriteY);
 t.Start(); // Run WriteY on new thread
 while (true) Console .Write ("x"); // Write 'x' forever
 }

 static void WriteY() {
 while (true) Console .Write ("y"); // Write 'y' forever
 }
}

xxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy yy
xxyyyyyyyyyyy yy
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxx xx
xxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyy yy
yyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx
...

The main thread creates a new thread t on which it runs a method that repeatedly prints the character
y. Simultaneously, the main thread repeatedly prints the character x.

The CLR assigns each thread its own memory stack so that local variables are kept separate. In the
next example, we define a method with a local variable, then call the method simultaneously on the
main thread and a newly created thread:

static void Main() {
 new Thread (Go).Start(); // Call Go() on a new thread
 Go(); // Call Go() on the main thread
}

static void Go() {
 // Declare and use a local variable - 'cycles'
 for (int cycles = 0; cycles < 5; cycles++) Console .Write ('?');
}

??????????

A separate copy of the cycles variable is created on each thread's memory stack, and so the output is,
predictably, ten question marks.

Threads share data if they have a common reference to the same object instance. Here's an example:

 4

class ThreadTest {
 bool done;

 static void Main() {
 ThreadTest tt = new ThreadTest(); // Create a common instance
 new Thread (tt.Go).Start();
 tt.Go();
 }

 // Note that Go is now an instance method
 void Go() {
 if (!done) { done = true ; Console .WriteLine ("Done"); }
 }
}

Because both threads call Go() on the same ThreadTest instance, they share the done field. This
results in "Done" being printed once instead of twice:

Done

Static fields offer another way to share data between threads. Here's the same example with done as a
static field:

class ThreadTest {
 static bool done; // Static fields are shared between all threads

 static void Main() {
 new Thread (Go).Start();
 Go();
 }

 static void Go() {
 if (!done) { done = true ; Console .WriteLine ("Done"); }
 }
}

Both of these examples illustrate another key concept – that of thread safety (or, rather, lack of it!)
The output is actually indeterminate: it's possible (although unlikely) that "Done" could be printed
twice. If, however, we swap the order of statements in the Go method, then the odds of "Done" being
printed twice go up dramatically:

static void Go() {
 if (!done) { Console .WriteLine ("Done"); done = true ; }
}

Done

Done (usually!)

The problem is that one thread can be evaluating the if statement right as the other thread is executing
the WriteLine statement – before it's had a chance to set done to true.

The remedy is to obtain an exclusive lock while reading and writing to the common field. C#
provides the lock statement for just this purpose:

 5

class ThreadSafe {
 static bool done;
 static object locker = new object ();

 static void Main() {
 new Thread (Go).Start();
 Go();
 }

 static void Go() {
 lock (locker) {
 if (!done) { Console .WriteLine ("Done"); done = true ; }
 }
 }
}

When two threads simultaneously contend a lock (in this case, locker), one thread waits, or blocks,
until the lock becomes available. In this case, it ensures only one thread can enter the critical section
of code at a time, and "Done" will be printed just once. Code that's protected in such a manner – from
indeterminacy in a multithreading context – is called thread-safe.

Temporarily pausing, or blocking, is an essential feature in coordinating, or synchronizing the
activities of threads. Waiting for an exclusive lock is one reason for which a thread can block.
Another is if a thread wants to pause, or Sleep for a period of time:

Thread .Sleep (TimeSpan .FromSeconds (30)); // Block for 30 seconds

A thread can also wait for another thread to end, by calling its Join method:

Thread t = new Thread (Go); // Assume Go is some static method
t .Start();
t .Join(); // Wait (block) until thread t ends

A thread, while blocked, doesn't consume CPU resources.

How Threading Works
Multithreading is managed internally by a thread scheduler, a function the CLR typically delegates to
the operating system. A thread scheduler ensures all active threads are allocated appropriate execution
time, and that threads that are waiting or blocked – for instance – on an exclusive lock, or on user
input – do not consume CPU time.

On a single-core computer, a thread scheduler performs time-slicing – rapidly switching execution
between each of the active threads. This results in "choppy" behavior, such as in the very first
example, where each block of a repeating X or Y character corresponds to a time-slice allocated to
the thread. Under Windows, a time-slice is typically in the tens-of-milliseconds region – chosen such
as to be much larger than the CPU overhead in actually switching context between one thread and
another (which is typically in the few-microseconds region).

 6

On a multicore or multi-processor computer, multithreading is
implemented with a mixture of time-slicing and genuine
concurrency – where different threads run code simultaneously on
different CPUs. It's almost certain there will still be some time-
slicing, because of the operating system's need to service its own
threads – as well as those of other applications.

A thread is said to be preempted when its execution is
interrupted due to an external factor such as time-slicing. In
most situations, a thread has no control over when and where
it's preempted.

Threads vs. Processes
All threads within a single application are logically contained
within a process – the operating system unit in which an
application runs.

Threads have certain similarities to processes – for instance,
processes are typically time-sliced with other processes running on
the computer in much the same way as threads within a single C#
application. The key difference is that processes are fully isolated
from each other; threads share (heap) memory with other threads
running in the same application. This is what makes threads useful:
one thread can be fetching data in the background, while another
thread is displaying the data as it arrives.

Free

Use LINQPad to
interactively query

databases in LINQ instead
of SQL.

Written by the author of
this ebook and packed

with more than 200
samples.

Full C# / VB Code Snippet
IDE

Now with autocompletion!

www.linqpad.net

When to Use Threads
A common application for multithreading is performing time-consuming tasks in the background.
The main thread keeps running, while the worker thread does its background job. With Windows
Forms or WPF applications, if the main thread is tied up performing a lengthy operation, keyboard
and mouse messages cannot be processed, and the application becomes unresponsive. For this reason,
it’s worth running time-consuming tasks on worker threads even if the main thread has the user stuck
on a “Processing… please wait” modal dialog in cases where the program can’t proceed until a
particular task is complete. This ensures the application doesn’t get tagged as “Not Responding” by
the operating system, enticing the user to forcibly end the process in frustration! The modal dialog
approach also allows for implementing a "Cancel" button, since the modal form will continue to
receive events while the actual task is performed on the worker thread. The BackgroundWorker class
assists in just this pattern of use.

In the case of non-UI applications, such as a Windows Service, multithreading makes particular sense
when a task is potentially time-consuming because it’s awaiting a response from another computer
(such as an application server, database server, or client). Having a worker thread perform the task
means the instigating thread is immediately free to do other things.

 7

Another use for multithreading is in methods that perform intensive calculations. Such methods can
execute faster on a multi-processor computer if the workload is divided amongst multiple threads.
(One can test for the number of processors via the Environment.ProcessorCount property).

A C# application can become multi-threaded in two ways: either by explicitly creating and running
additional threads, or using a feature of the .NET framework that implicitly creates threads – such as
BackgroundWorker, thread pooling, a threading timer, a Remoting server, or a Web Services or
ASP.NET application. In these latter cases, one has no choice but to embrace multithreading. A
single-threaded ASP.NET web server would not be cool – even if such a thing were possible!
Fortunately, with stateless application servers, multithreading is usually fairly simple; one's only
concern perhaps being in providing appropriate locking mechanisms around data cached in static
variables.

When Not to Use Threads
Multithreading also comes with disadvantages. The biggest is that it can lead to vastly more complex
programs. Having multiple threads does not in itself create complexity; it's the interaction between
the threads that creates complexity. This applies whether or not the interaction is intentional, and can
result long development cycles, as well as an ongoing susceptibility to intermittent and non-
reproducable bugs. For this reason, it pays to keep such interaction in a multi-threaded design simple
– or not use multithreading at all – unless you have a peculiar penchant for re-writing and debugging!

Multithreading also comes with a resource and CPU cost in allocating and switching threads if used
excessively. In particular, when heavy disk I/O is involved, it can be faster to have just one or two
workers thread performing tasks in sequence, rather than having a multitude of threads each
executing a task at the same time. Later we describe how to implement a Producer/Consumer queue,
which provides just this functionality.

Creating and Starting Threads
Threads are created using the Thread class’s constructor, passing in a ThreadStart delegate –
indicating the method where execution should begin. Here’s how the ThreadStart delegate is
defined:

public delegate void ThreadStart ();

Calling Start on the thread then sets it running. The thread continues until its method returns, at
which point the thread ends. Here’s an example, using the expanded C# syntax for creating a
TheadStart delegate:

class ThreadTest {
 static void Main() {
 Thread t = new Thread (new ThreadStart (Go));
 t.Start(); // Run Go() on the new thread.
 Go(); // Simultaneously run Go() in the main thread.
 }

 static void Go() { Console .WriteLine ("hello!"); }

In this example, thread t executes Go() – at (much) the same time the main thread calls Go(). The
result is two near-instant hellos:

hello!
hello!

 8

A thread can be created more conveniently using C#'s shortcut syntax for instantiating delegates:

static void Main() {
 // No need to explicitly use ThreadStart:
 Thread t = new Thread (Go);
 t.Start();
 ...
}

static void Go() { ... }

In this case, a ThreadStart delegate is inferred automatically by the compiler. Another shortcut is to
use an anonymous method to start the thread:

static void Main() {
 Thread t = new Thread (delegate () { Console .Write ("Hello!"); });
 t.Start();
}

A thread has an IsAlive property that returns true after its Start() method has been called, up until the
thread ends. A thread, once ended, cannot be re-started.

Passing Data to ThreadStart
Let’s say, in the example above, we wanted to better distinguish the output from each thread, perhaps
by having one of the threads write in upper case. We could achieve this by passing a flag to the Go
method: but then we couldn’t use the ThreadStart delegate because it doesn’t accept arguments.
Fortunately, the .NET framework defines another version of the delegate called
ParameterizedThreadStart, which accepts a single object argument as follows:

public delegate void ParameterizedThreadStart (object obj);

The previous example then looks like this:

class ThreadTest {
 static void Main() {
 Thread t = new Thread (Go);
 t.Start (true); // == Go (true)
 Go (false);
 }

 static void Go (object upperCase) {
 bool upper = (bool) upperCase;
 Console .WriteLine (upper ? "HELLO!" : "hello!");
 }

hello!
HELLO!

In this example, the compiler automatically infers a ParameterizedThreadStart delegate because
the Go method accepts a single object argument. We could just as well have written:

Thread t = new Thread (new ParameterizedThreadStart (Go));
t.Start (true);

A feature of using ParameterizedThreadStart is that we must cast the object argument to the
desired type (in this case bool) before use. Also, there is only a single-argument version of this
delegate.

An alternative is to use an anonymous method to call an ordinary method as follows:

 9

static void Main() {
 Thread t = new Thread (delegate () { WriteText ("Hello"); });
 t.Start();
}

static void WriteText (string text) { Console .WriteLine (text); }

The advantage is that the target method (in this case WriteText) can accept any number of
arguments, and no casting is required. However one must take into account the outer-variable
semantics of anonymous methods, as is apparent in the following example:

static void Main() {
 string text = "Before" ;
 Thread t = new Thread (delegate () { WriteText (text); });
 text = "After" ;
 t.Start();
}

static void WriteText (string text) { Console .WriteLine (text); }

After

Another common system for passing data to a thread is by giving Thread an instance method rather
than a static method. The instance object’s properties can then tell the thread what to do, as in the
following rewrite of the original example:

class ThreadTest {
 bool upper;

 static void Main() {
 ThreadTest instance1 = new ThreadTest();
 instance1.upper = true ;
 Thread t = new Thread (instance1.Go);
 t.Start();
 ThreadTest instance2 = new ThreadTest();
 instance2.Go(); // Main thread – runs with upper=false
 }

 void Go() { Console .WriteLine (upper ? "HELLO!" : "hello!"); }

Naming Threads
A thread can be named via its Name property. This is of great benefit in debugging: as well as being
able to Console.WriteLine a thread’s name, Microsoft Visual Studio picks up a thread’s name and
displays it in the Debug Location toolbar. A thread’s name can be set at any time – but only once –
attempts to subsequently change it will throw an exception.

Anonymous methods open the grotesque possibility of unintended interaction via outer
variables if they are modified by either party subsequent to the thread starting. Intended
interaction (usually via fields) is generally considered more than enough! Outer variables are
best treated as ready-only once thread execution has begun – unless one's willing to implement
appropriate locking semantics on both sides.

 10

The application’s main thread can also be assigned a name – in the following example the main
thread is accessed via the CurrentThread static property:

class ThreadNaming {
 static void Main() {
 Thread . CurrentThread.Name = "main" ;
 Thread worker = new Thread (Go);
 worker. Name = "worker" ;
 worker.Start();
 Go();
 }

 static void Go() {
 Console .WriteLine ("Hello from " + Thread .CurrentThread.Name);
 }
}

Hello from main
Hello from worker

Foreground and Background Threads
By default, threads are foreground threads, meaning they keep the application alive for as long as any
one of them is running. C# also supports background threads, which don’t keep the application alive
on their own – terminating immediately once all foreground threads have ended.

A thread's IsBackground property controls its background status, as in the following example:

class PriorityTest {
 static void Main (string [] args) {
 Thread worker = new Thread (delegate () { Console .ReadLine(); });
 if (args.Length > 0) worker. IsBackground = true ;
 worker.Start();
 }
}

If the program is called with no arguments, the worker thread runs in its default foreground mode,
and will wait on the ReadLine statement, waiting for the user to hit Enter. Meanwhile, the main
thread exits, but the application keeps running because a foreground thread is still alive.

If on the other hand an argument is passed to Main() , the worker is assigned background status, and
the program exits almost immediately as the main thread ends – terminating the ReadLine.

When a background thread terminates in this manner, any finally blocks are circumvented. As
circumventing finally code is generally undesirable, it's good practice to explicitly wait for any
background worker threads to finish before exiting an application – perhaps with a timeout (this is
achieved by calling Thread.Join). If for some reason a renegade worker thread never finishes, one can
then attempt to abort it, and if that fails, abandon the thread, allowing it to die with the process
(logging the conundrum at this stage would also make sense!)

Changing a thread from foreground to background doesn’t change its priority or status within
the CPU scheduler in any way.

 11

Having worker threads as background threads can then beneficial, for the very reason that it's always
possible to have the last say when it comes to ending the application. Consider the alternative –
foreground thread that won't die – preventing the application from exiting. An abandoned foreground
worker thread is particularly insidious with a Windows Forms application, because the application
will appear to exit when the main thread ends (at least to the user) but its process will remain running.
In the Windows Task Manager, it will have disappeared from the Applications tab, although its
executable filename still be visible in the Processes tab. Unless the user explicitly locates and ends
the task, it will continue to consume resources and perhaps prevent a new instance of the application
from starting or functioning properly.

Thread Priority
A thread’s Priority property determines how much execution time it gets relative to other active
threads in the same process, on the following scale:

public enum ThreadPriority
 { Lowest, BelowNormal, Normal, AboveNormal, Highes t }

This becomes relevant only when multiple threads are simultaneously active.

Setting a thread’s priority to high doesn’t mean it can perform real-time work, because it’s still
limited by the application’s process priority. To perform real-time work, the Process class in
System.Diagnostics must also be used to elevate the process priority as follows (I didn't tell you how
to do this):

Process .GetCurrentProcess().PriorityClass =
 ProcessPriorityClass .High;

ProcessPriorityClass.High is actually one notch short of the highest process priority: Realtime.
Setting one's process priority to Realtime instructs the operating system that you never want your
process to be preempted. If your program enters an accidental infinite loop you can expect even the
operating system to be locked out. Nothing short of the power button will rescue you! For this reason,
High is generally considered the highest usable process priority.

If the real-time application has a user interface, it can be undesirable to elevate the process priority
because screen updates will be given excessive CPU time – slowing the entire computer, particularly
if the UI is complex. (Although at the time of writing, the Internet telephony program Skype gets
away with doing just this, perhaps because its UI is fairly simple). Lowering the main thread’s
priority – in conjunction with raising the process’s priority – ensures the real-time thread doesn’t get
preempted by screen redraws, but doesn’t prevent the computer from slowing, because the operating
system will still allocate excessive CPU to the process as a whole. The ideal solution is to have the
real-time work and user interface in separate processes (with different priorities), communicating via
Remoting or shared memory. Shared memory requires P/Invoking the Win32 API (web-search
CreateFileMapping and MapViewOfFile).

A common cause for an application failing to exit properly is the presence of “forgotten”
foregrounds threads.

 12

Exception Handling
Any try/catch/finally blocks in scope when a thread is created are of no relevance once the thread
starts executing. Consider the following program:

public static void Main() {
 try {
 new Thread (Go).Start();
 }
 catch (Exception ex) {
 // We'll never get here!
 Console .WriteLine ("Exception!");
 }

 static void Go() { throw null ; }
}

The try/catch statement in this example is effectively useless, and the newly created thread will be
encumbered with an unhandled NullReferenceException. This behavior makes sense when you
consider a thread has an independent execution path. The remedy is for thread entry methods to have
their own exception handlers:

public static void Main() {
 new Thread (Go).Start();
}

static void Go() {
 try {
 ...
 throw null ; // this exception will get caught below
 ...
 }
 catch (Exception ex) {

 Typically log the exception, and/or signal another thread

 that we've come unstuck
 ...
 }

From .NET 2.0 onwards, an unhandled exception on any thread shuts down the whole application,
meaning ignoring the exception is generally not an option. Hence a try/catch block is required in
every thread entry method – at least in production applications – in order to avoid unwanted
application shutdown in case of an unhandled exception. This can be somewhat cumbersome –
particularly for Windows Forms programmers, who commonly use the "global" exception handler, as
follows:

static class Program {
 static void Main() {
 Application.ThreadException += HandleError;
 Application.Run (new MainForm());
 }

 static void HandleError (object sender,
 ThreadExceptionEventArgs e) {

 Log exception, then either exit the app or continue...
 }
}

 13

The Application.ThreadException event fires when an exception is thrown from code that was
ultimately called as a result of a Windows message (for example, a keyboard, mouse or "paint"
message) – in short, nearly all code in a typical Windows Forms application. While this works
perfectly, it lulls one into a false sense of security – that all exceptions will be caught by the central
exception handler. Exceptions thrown on worker threads are a good example of exceptions not caught
by Application.ThreadException (the code inside the Main method is another – including the main
form's constructor, which executes before the Windows message loop begins).

The .NET framework provides a lower-level event for global exception handling:
AppDomain.UnhandledException. This event fires when there's an unhandled exception in any
thread, and in any type of application (with or without a user interface). However, while it offers a
good last-resort mechanism for logging untrapped exceptions, it provides no means of preventing the
application from shutting down – and no means to suppress the .NET unhandled exception dialog.

In production applications, explicit exception handling is required on all thread entry methods.
One can cut the work by using a wrapper or helper class to perform the job, such as
BackgroundWorker (discussed in Part 3).

 14

PART 2
BASIC SYNCHRONIZATION

Synchronization Essentials
The following summarize the .NET tools for coordinating or synchronizing the actions of threads:

Simple Blocking Methods

Construct Purpose

Sleep Blocks for a given time period.

Join Waits for another thread to finish.

Locking Constructs

Construct Purpose
Cross-
Process? Speed

lock Ensures just one thread can access a resource, or section of code. no fast

Mutex
Ensures just one thread can access a resource, or section of code.
Can be used to prevent multiple instances of an application from
starting.

yes moderate

Semaphore
Ensures not more than a specified number of threads can access a
resource, or section of code.

yes moderate

Signaling Constructs

Construct Purpose Cross-
Process? Speed

EventWaitHandle
Allows a thread to wait until it receives a signal
from another thread.

yes moderate

Wait and Pulse*
Allows a thread to wait until a custom blocking
condition is met.

no moderate

Non-Blocking Synchronization Constructs*

Construct Purpose Cross-
Process?

Speed

Interlocked* To perform simple non-blocking atomic operations. yes (assuming
shared
memory)

very fast

volatile*
To allow safe non-blocking access to individual fields
outside of a lock.

very fast

*Covered in Part 4

 15

Blocking
When a thread waits or pauses as a result of using the constructs listed in the tables above, it's said to
be blocked. Once blocked, a thread immediately relinquishes its allocation of CPU time, adds
WaitSleepJoin to its ThreadState property, and doesn’t get re-scheduled until unblocked. Unblocking
happens in one of four ways (the computer's power button doesn't count!):

• by the blocking condition being satisfied

• by the operation timing out (if a timeout is specified)

• by being interrupted via Thread.Interrupt

• by being aborted via Thread.Abort

A thread is not deemed blocked if its execution is paused via the (deprecated) Suspend method.

Sleeping and Spinning
Calling Thread.Sleep blocks the current thread for the given time period (or until interrupted):

static void Main() {
 Thread .Sleep (0); // relinquish CPU time-slice
 Thread .Sleep (1000); // sleep for 1000 ms
 Thread .Sleep (TimeSpan .FromHours (1)); // sleep for 1 hour
 Thread .Sleep (Timeout .Infinite); // sleep until interrupted
}

More precisely, Thread.Sleep relinquishes the CPU, requesting that the thread is not re-scheduled
until the given time period has elapsed. Thread.Sleep(0) relinquishes the CPU just long enough to
allow any other active threads present in a time-slicing queue (should there be one) to be executed.

The Thread class also provides a SpinWait method, which doesn’t relinquish any CPU time, instead
looping the CPU – keeping it “uselessly busy” for the given number of iterations. 50 iterations might
equate to a pause of around a microsecond, although this depends on CPU speed and load.
Technically, SpinWait is not a blocking method: a spin-waiting thread does not have a ThreadState
of WaitSleepJoin and can’t be prematurely Interrupt ed by another thread. SpinWait is rarely used
– its primary purpose being to wait on a resource that’s expected to be ready very soon (inside maybe
a microsecond) without calling Sleep and wasting CPU time by forcing a thread change. However
this technique is advantageous only on multi-processor computers: on single-processor computers,
there’s no opportunity for a resource’s status to change until the spinning thread ends its time-slice –
which defeats the purpose of spinning to begin with. And calling SpinWait often or for long periods
of time itself is wasteful on CPU time.

Thread.Sleep is unique amongst the blocking methods in that suspends Windows message
pumping within a Windows Forms application, or COM environment on a thread for which the
single-threaded apartment model is used. This is of little consequence with Windows Forms
applications, in that any lengthy blocking operation on the main UI thread will make the
application unresponsive – and is hence generally avoided – regardless of the whether or not
message pumping is "technically" suspended. The situation is more complex in a legacy COM
hosting environment, where it can sometimes be desirable to sleep while keeping message
pumping alive. Microsoft's Chris Brumme discusses this at length in his web log (search:
'COM "Chris Brumme" ').

 16

Blocking vs. Spinning

A thread can wait for a certain condition by explicitly spinning using a polling loop, for example:

while (!proceed);

or:

while (DateTime .Now < nextStartTime);

This is very wasteful on CPU time: as far as the CLR and operating system is concerned, the thread is
performing an important calculation, and so gets allocated resources accordingly! A thread looping in
this state is not counted as blocked, unlike a thread waiting on an EventWaitHandle (the construct
usually employed for such signaling tasks).

A variation that's sometimes used is a hybrid between blocking and spinning:

while (!proceed) Thread .Sleep (x); // "Spin-Sleeping!"

The larger x, the more CPU-efficient this is; the trade-off being in increased latency. Anything above
20ms incurs a negligible overhead – unless the condition in the while-loop is particularly complex.

Except for the slight latency, this combination of spinning and sleeping can work quite well (subject
to concurrency issues on the proceed flag, discussed in Part 4). Perhaps its biggest use is when a
programmer has given up on getting a more complex signaling construct to work!

Joining a Thread
You can block until another thread ends by calling Join:

class JoinDemo {
 static void Main() {
 Thread t = new Thread (delegate () { Console .ReadLine(); });
 t.Start();
 t. Join(); // Wait until thread t finishes
 Console .WriteLine ("Thread t's ReadLine complete!");
 }
}

The Join method also accepts a timeout argument – in milliseconds, or as a TimeSpan, returning
false if the Join timed out rather than found the end of the thread. Join with a timeout functions rather
like Sleep – in fact the following two lines of code are almost identical:

Thread .Sleep (1000);
Thread .CurrentThread.Join (1000);

(Their difference is apparent only in single-threaded apartment applications with COM
interoperability, and stems from the subtleties in Windows message pumping semantics described
previously: Join keeps message pumping alive while blocked; Sleep suspends message pumping).

Locking and Thread Safety
Locking enforces exclusive access, and is used to ensure only one thread can enter particular sections
of code at a time. For example, consider following class:

 17

class ThreadUnsafe {
 static int val1, val2;

 static void Go() {
 if (val2 != 0) Console .WriteLine (val1 / val2);
 val2 = 0;
 }
}

This is not thread-safe: if Go was called by two threads simultaneously it would be possible to get a
division by zero error – because val2 could be set to zero in one thread right as the other thread was
in between executing the if statement and Console.WriteLine.

Here’s how lock can fix the problem:

class ThreadSafe {
 static object locker = new object ();
 static int val1, val2;

 static void Go() {
 lock (locker) {
 if (val2 != 0) Console .WriteLine (val1 / val2);
 val2 = 0;
 }
 }
}

Only one thread can lock the synchronizing object (in this case locker) at a time, and any contending
threads are blocked until the lock is released. If more than one thread contends the lock, they are
queued – on a “ready queue” and granted the lock on a first-come, first-served basis as it becomes
available. Exclusive locks are sometimes said to enforce serialized access to whatever's protected by
the lock, because one thread's access cannot overlap with that of another. In this case, we're protecting
the logic inside the Go method, as well as the fields val1 and val2.

A thread blocked while awaiting a contended lock has a ThreadState of WaitSleepJoin. Later we
discuss how a thread blocked in this state can be forcibly released via another thread calling its
Interrupt or Abort method. This is a fairly heavy-duty technique that might typically be used in
ending a worker thread.

C#’s lock statement is in fact a syntactic shortcut for a call to the methods Monitor.Enter and
Monitor.Exit , within a try-finally block. Here’s what’s actually happening within the Go method of
the previous example:

Monitor.Enter (locker);
try {
 if (val2 != 0) Console .WriteLine (val1 / val2);
 val2 = 0;
}
finally { Monitor.Exit (locker); }

Calling Monitor.Exit without first calling Monitor.Enter on the same object throws an exception.

Monitor also provides a TryEnter method allows a timeout to be specified – either in milliseconds
or as a TimeSpan. The method then returns true – if a lock was obtained – or false – if no lock was
obtained because the method timed out. TryEnter can also be called with no argument, which "tests"
the lock, timing out immediately if the lock can’t be obtained right away.

 18

Choosing the Synchronization Object
Any object visible to each of the partaking threads can be used as a synchronizing object, subject to
one hard rule: it must be a reference type. It’s also highly recommended that the synchronizing object
be privately scoped to the class (i.e. a private instance field) to prevent an unintentional interaction
from external code locking the same object. Subject to these rules, the synchronizing object can
double as the object it's protecting, such as with the list field below:

class ThreadSafe {
 List < string > list = new List < string >();

 void Test() {
 lock (list) {
 list.Add ("Item 1");
 ...

A dedicated field is commonly used (such as locker, in the example prior), because it allows precise
control over the scope and granularity of the lock. Using the object or type itself as a synchronization
object, i.e.:

lock (this) { ... }

or:

lock (typeof (Widget)) { ... } // For protecting access to st atics

is discouraged because it potentially offers public scope to the synchronization object.

Nested Locking
A thread can repeatedly lock the same object, either via multiple calls to Monitor.Enter , or via
nested lock statements. The object is then unlocked when a corresponding number of Monitor.Exit
statements have executed, or the outermost lock statement has exited. This allows for the most natural
semantics when one method calls another as follows:

static object x = new object ();

static void Main() {
 lock (x) {
 Console .WriteLine ("I have the lock");
 Nest();
 Console .WriteLine ("I still have the lock");
 }

 Here the lock is released.
}

static void Nest() {
 lock (x) {
 ...
 }

 Released the lock? Not quite!
}

Locking doesn't restrict access to the synchronizing object itself in any way. In other words,
x.ToString() will not block because another thread has called lock(x) – both threads must call
lock(x) in order for blocking to occur.

 19

A thread can block only on the first, or outermost lock.

When to Lock
As a basic rule, any field accessible to multiple threads should be read and written within a lock. Even
in the simplest case – an assignment operation on a single field – one must consider synchronization.
In the following class, neither the Increment nor the Assign method is thread-safe:

class ThreadUnsafe {
 static int x;
 static void Increment() { x++; }
 static void Assign() { x = 123; }
}

Here are thread-safe versions of Increment and Assign:

class ThreadUnsafe {
 static object locker = new object ();
 static int x;

 static void Increment() { lock (locker) x++; }
 static void Assign() { lock (locker) x = 123; }
}

As an alternative to locking, one can use a non-blocking synchronization construct in these simple
situations. This is discussed in Part 4 (along with the reasons that such statements require
synchronization).

Locking and Atomicity

If a group of variables are always read and written within the same lock, then one can say the
variables are read and written atomically. Let's suppose fields x and y are only ever read or assigned
within a lock on object locker:

lock (locker) { if (x != 0) y /= x; }

One can say x and y are accessed atomically, because the code block cannot be divided or preempted
by the actions of another thread in such a way that will change x or y and invalidate its outcome.
You'll never get a division-by-zero error, providing x and y are always accessed within this same
exclusive lock.

Performance Considerations
Locking itself is very fast: a lock is typically obtained in tens of nanoseconds assuming no blocking.
If blocking occurs, the consequential task-switching moves the overhead closer to the microseconds-
region, although it may be milliseconds before the thread's actually rescheduled. This, in turn, is
dwarfed by the hours of overhead – or overtime – that can result from not locking when you should
have!

Locking can have adverse effects if improperly used – impoverished concurrency, deadlocks and lock
races. Impoverished concurrency occurs when too much code is placed in a lock statement, causing
other threads to block unnecessarily. A deadlock is when two threads each wait for a lock held by the
other, and so neither can proceed. A lock race happens when it’s possible for either of two threads to
obtain a lock first, the program breaking if the “wrong” thread wins.

 20

Deadlocks are most commonly a syndrome of too many synchronizing
objects. A good rule is to start on the side of having fewer objects on
which to lock, increasing the locking granularity when a plausible
scenario involving excessive blocking arises.

Thread Safety
Thread-safe code is code which has no indeterminacy in the face of
any multithreading scenario. Thread-safety is achieved primarily with
locking, and by reducing the possibilities for interaction between
threads.

• A method which is thread-safe in any scenario is called
reentrant. General-purpose types are rarely thread-safe in
their entirety, for the following reasons:the development
burden in full thread-safety can be significant, particularly if
a type has many fields (each field is a potential for
interaction in an arbitrarily multi-threaded context)

• thread-safety can entail a performance cost (payable, in part,
whether or not the type is actually used by multiple threads)

• a thread-safe type does not necessarily make the program
using it thread-safe – and sometimes the work involved in
the latter can make the former redundant.

Thread-safety is hence usually implemented just where it needs to be,
in order to handle a specific multithreading scenario.

There are, however, a few ways to "cheat" and have large and complex
classes run safely in a multi-threaded environment. One is to sacrifice
granularity by wrapping large sections of code – even access to an
entire object – around an exclusive lock – enforcing serialized access
at a high level. This tactic is also crucial in allowing a thread-unsafe
object to be used within thread-safe code – and is valid providing the
same exclusive lock is used to protect access to all properties, methods
and fields on the thread-unsafe object.

Get the whole book:

Introducing C#
C# Language Basics
Creating Types in C#
Advanced C# Features
Framework Fundamentals
Collections
LINQ Queries
LINQ Operators
LINQ to XML
Other XML Technologies
Disposal & Garbage Collection
Streams and I/O
Networking
Serialization
Assemblies
Reflection & Metadata
Threading
Asynchronous Methods
Application Domains
Integrating with Native DLLs
Diagnostics
Regular Expressions

http://www.albahari.com/nutshell

Another way to cheat is to minimize thread interaction by minimizing shared data. This is an
excellent approach and is used implicitly in "stateless" middle-tier application and web page servers.
Since multiple client requests can arrive simultaneously, each request comes in on its own thread (by
virtue of the ASP.NET, Web Services or Remoting architectures), and this means the methods they
call must be thread-safe. A stateless design (popular for reasons of scalability) intrinsically limits the
possibility of interaction, since classes are unable to persist data between each request. Thread
interaction is then limited just to static fields one may choose to create – perhaps for the purposes of

Primitive types aside, very few .NET framework types when instantiated are thread-safe for
anything more than concurrent read-only access. The onus is on the developer to superimpose
thread-safety – typically using exclusive locks.

 21

caching commonly used data in memory – and in providing infrastructure services such as
authentication and auditing.

Thread-Safety and .NET Framework Types

Locking can be used to convert thread-unsafe code into thread-safe code. A good example is with the
.NET framework – nearly all of its non-primitive types are not thread safe when instantiated, and yet
they can be used in multi-threaded code if all access to any given object is protected via a lock. Here's
an example, where two threads simultaneously add items to the same List collection, then enumerate
the list:

class ThreadSafe {
 static List < string > list = new List < string >();

 static void Main() {
 new Thread (AddItems).Start();
 new Thread (AddItems).Start();
 }

 static void AddItems() {
 for (int i = 0; i < 100; i++)
 lock (list)
 list.Add ("Item " + list.Count);

 string [] items;
 lock (list) items = list.ToArray();
 foreach (string s in items) Console .WriteLine (s);
 }
}

In this case, we're locking on the list object itself, which is fine in this simple scenario. If we had two
interrelated lists, however, we would need to lock upon a common object – perhaps a separate field, if
neither list presented itself as the obvious candidate.

Enumerating .NET collections is also thread-unsafe in the sense that an exception is thrown if another
thread alters the list during enumeration. Rather than locking for the duration of enumeration, in this
example, we first copy the items to an array. This avoids holding the lock excessively if what we're
doing during enumeration is potentially time-consuming.

Here's an interesting supposition: imagine if the List class was, indeed, thread-safe. What would it
solve? Potentially, very little! To illustrate, let's say we wanted to add an item to our hypothetical
thread-safe list, as follows:

if (!myList.Contains (newItem)) myList.Add (newItem);

Whether or not the list was thread-safe, this statement is certainly not! The whole if statement would
have to be wrapped in a lock – to prevent preemption in between testing for containership and adding
the new item. This same lock would then need to be used everywhere we modified that list. For
instance, the following statement would also need to be wrapped – in the identical lock:

myList.Clear();

to ensure it did not preempt the former statement. In other words, we would have to lock almost
exactly as with our thread-unsafe collection classes. Built-in thread safety, then, can actually be a
waste of time!

One could argue this point when writing custom components – why build in thread-safety when it can
easily end up being redundant?

 22

There is a counter-argument: wrapping an object around a custom lock works only if all concurrent
threads are aware of, and use, the lock – which may not be the case if the object is widely scoped. The
worst scenario crops up with static members in a public type. For instance, imagine the static property
on the DateTime struct, DateTime.Now, was not thread-safe, and that two concurrent calls could
result in garbled output or an exception. The only way to remedy this with external locking might be
to lock the type itself – lock(typeof(DateTime)) – around calls to DateTime.Now – which would
work only if all programmers agreed to do this. And this is unlikely, given that locking a type is
considered by many, a Bad Thing!

For this reason, static members on the DateTime struct are guaranteed to be thread-safe. This is a
common pattern throughout the .NET framework – static members are thread-safe, while instance
members are not. Following this pattern also makes sense when writing custom types, so as not to
create impossible thread-safety conundrums!

Interrupt and Abort
A blocked thread can be released prematurely in one of two ways:

• via Thread.Interrupt

• via Thread.Abort

This must happen via the activities of another thread; the waiting thread is powerless to do anything
in its blocked state.

Interrupt
Calling Interrupt on a blocked thread forcibly releases it, throwing a ThreadInterruptedException ,
as follows:

class Program {
 static void Main() {
 Thread t = new Thread (delegate () {
 try {
 Thread .Sleep (Timeout .Infinite);
 }
 catch (ThreadInterruptedException) {
 Console .Write ("Forcibly ");
 }
 Console .WriteLine ("Woken!");
 });

 t.Start();
 t. Interrupt();
 }
}

Forcibly Woken!

When writing components for public consumption, a good policy is to program at least such as
not to preclude thread-safety. This means being particularly careful with static members –
whether used internally or exposed publicly.

 23

Interrupting a thread only releases it from its current (or next) wait: it does not cause the thread to end
(unless, of course, the ThreadInterruptedException is unhandled!)

If Interrupt is called on a thread that’s not blocked, the thread continues executing until it next
blocks, at which point a ThreadInterruptedException is thrown. This avoids the need for the
following test:

if ((worker.ThreadState & ThreadState .WaitSleepJoin) > 0)
 worker.Interrupt();

which is not thread-safe because of the possibility of being preempted in between the if statement and
worker.Interrupt .

Interrupting a thread arbitrarily is dangerous, however, because any framework or third-party
methods in the calling stack could unexpectedly receive the interrupt rather than your intended code.
All it would take is for the thread to block briefly on a simple lock or synchronization resource, and
any pending interruption would kick in. If the method wasn't designed to be interrupted (with
appropriate cleanup code in finally blocks) objects could be left in an unusable state, or resources
incompletely released.

Interrupting a thread is safe when you know exactly where the thread is. Later we cover signaling
constructs, which provide just such a means.

Abort
A blocked thread can also be forcibly released via its Abort method. This has an effect similar to
calling Interrupt , except that a ThreadAbortException is thrown instead of a
ThreadInterruptedException . Furthermore, the exception will be re-thrown at the end of the catch
block (in an attempt to terminate the thread for good) unless Thread.ResetAbort is called within the
catch block. In the interim, the thread has a ThreadState of AbortRequested.

The big difference, though, between Interrupt and Abort , is what happens when it's called on a
thread that is not blocked. While Interrupt waits until the thread next blocks before doing anything,
Abort throws an exception on the thread right where it's executing – maybe not even in your code.
Aborting a non-blocked thread can have significant consequences, the details of which are explored
in the later section "Aborting Threads".

 24

Thread State

Figure 1: Thread State Diagram

One can query a thread's execution status via its ThreadState property. Figure 1 shows one "layer" of
the ThreadState enumeration. ThreadState is horribly designed, in that it combines three "layers" of
state using bitwise flags, the members within each layer being themselves mutually exclusive. Here
are all three layers:

• the running / blocking / aborting status (as shown in Figure 1)

• the background/foreground status (ThreadState.Background)

• the progress towards suspension via the deprecated Suspend method
(ThreadState.SuspendRequested and ThreadState.Suspended)

In total then, ThreadState is a bitwise combination of zero or one members from each layer! Here
are some sample ThreadStates:

Unstarted
Running
WaitSleepJoin
Background, Unstarted
SuspendRequested, Background, WaitSleepJoin

(The enumeration has two members that are never used, at least in the current CLR implementation:
StopRequested and Aborted.)

To complicate matters further, ThreadState.Running has an underlying value of 0, so the following
test does not work:

if ((t.ThreadState & ThreadState .Running) > 0) ...

and one must instead test for a running thread by exclusion, or alternatively, use the thread's IsAlive
property. IsAlive, however, might not be what you want. It returns true if the thread's blocked or
suspended (the only time it returns false is before the thread has started, and after it has ended).

Assuming one steers clear of the deprecated Suspend and Resume methods, one can write a helper
method that eliminates all but members of the first layer, allowing simple equality tests to be

 25

performed. A thread's background status can be obtained independently via its IsBackground
property, so only the first layer actually has useful information:

public static ThreadState SimpleThreadState (ThreadState ts)
{
 return ts & (ThreadState .Aborted | ThreadState .AbortRequested |
 ThreadState .Stopped | ThreadState .Unstarted |
 ThreadState .WaitSleepJoin);
}

ThreadState is invaluable for debugging or profiling. It's poorly suited, however, to coordinating
multiple threads, because no mechanism exists by which one can test a ThreadState and then act
upon that information, without the ThreadState potentially changing in the interim.

Wait Handles
The lock statement (aka Monitor.Enter / Monitor.Exit) is one example of a thread synchronization
construct. While lock is suitable for enforcing exclusive access to a particular resource or section of
code, there are some synchronization tasks for which it's clumsy or inadequate, such as signaling a
waiting worker thread to begin a task.

The Win32 API has a richer set of synchronization constructs, and these are exposed in the .NET
framework via the EventWaitHandle, Mutex and Semaphore classes. Some are more useful than
others: the Mutex class, for instance, mostly doubles up on what's provided by lock, while
EventWaitHandle provides unique signaling functionality.

All three classes are based on the abstract WaitHandle class, although behaviorally, they are quite
different. One of the things they do all have in common is that they can, optionally, be "named",
allowing them to work across all operating system processes, rather than across just the threads in the
current process.

EventWaitHandle has two subclasses: AutoResetEvent and ManualResetEvent (neither being
related to a C# event or delegate). Both classes derive all their functionality from their base class:
their only difference being that they call the base class's constructor with a different argument.

In terms of performance, the overhead with all Wait Handles typically runs in the few-microseconds
region. Rarely is this of consequence in the context in which they are used.

AutoResetEvent
An AutoResetEvent is much like a ticket turnstile: inserting a ticket lets exactly one person through.
The "auto" in the class's name refers to the fact that an open turnstile automatically closes or "resets"
after someone is let through. A thread waits, or blocks, at the turnstile by calling WaitOne (wait at
this "one" turnstile until it opens) and a ticket is inserted by calling the Set method. If a number of
threads call WaitOne, a queue builds up behind the turnstile. A ticket can come from any thread – in
other words, any (unblocked) thread with access to the AutoResetEvent object can call Set on it to
release one blocked thread.

AutoResetEvent is the most useful of the WaitHandle classes, and is a staple synchronization
construct, along with the lock statement.

 26

If Set is called when no thread is waiting, the handle stays open for as long as it takes until some
thread to call WaitOne. This behavior helps avoid a race between a thread heading for the turnstile,
and a thread inserting a ticket ("oops, inserted the ticket a microsecond too soon, bad luck, now you'll
have to wait indefinitely!") However calling Set repeatedly on a turnstile at which no-one is waiting
doesn't allow a whole party through when they arrive: only the next single person is let through and
the extra tickets are "wasted".

WaitOne accepts an optional timeout parameter – the method then returns false if the wait ended
because of a timeout rather than obtaining the signal. WaitOne can also be instructed to exit the
current synchronization context for the duration of the wait (if an automatic locking regime is in use)
in order to prevent excessive blocking.

A Reset method is also provided that closes the turnstile – should it be open, without any waiting or
blocking.

An AutoResetEvent can be created in one of two ways. The first is via its constructor:

EventWaitHandle wh = new AutoResetEvent (false);

If the boolean argument is true, the handle's Set method is called automatically, immediately after
construction. The other method of instantiatation is via its base class, EventWaitHandle:

EventWaitHandle wh = new EventWaitHandle (false ,
 EventResetMode .Auto);

EventWaitHandle's constructor also allows a ManualResetEvent to be created (by specifying
EventResetMode.Manual).

One should call Close on a Wait Handle to release operating system resources once it's no longer
required. However, if a Wait Handle is going to be used for the life of an application (as in most of
the examples in this section), one can be lazy and omit this step as it will be taken care of
automatically during application domain tear-down.

In the following example, a thread is started whose job is simply to wait until signaled by another
thread:

class BasicWaitHandle {
 static EventWaitHandle wh = new AutoResetEvent (false);

 static void Main() {
 new Thread (Waiter).Start();
 Thread .Sleep (1000); // Wait for some time...
 wh. Set(); // OK - wake it up
 }
 static void Waiter() {
 Console .WriteLine ("Waiting...");
 wh. WaitOne(); // Wait for notification
 Console .WriteLine ("Notified");
 }
}

Waiting... (pause) Notified.

Creating a Cross-Process EventWaitHandle

EventWaitHandle's constructor also allows a "named" EventWaitHandle to be created – capable of
operating across multiple processes. The name is simply a string – and can be any value that doesn't
unintentionally conflict with someone else's! If the name is already in use on the computer, one gets a

 27

reference to the same underlying EventWaitHandle, otherwise the operating system creates a new
one. Here's an example:

EventWaitHandle wh = new EventWaitHandle (false , EventResetMode .Auto,
 "MyCompany.MyApp.SomeName");

If two applications each ran this code, they would be able to signal each other: the wait handle would
work across all threads in both processes.

Acknowledgement

Supposing we wish to perform tasks in the background without the overhead of creating a new thread
each time we get a task. We can achieve this with a single worker thread that continually loops –
waiting for a task, executing it, and then waiting for the next task. This is a common multithreading
scenario. As well as cutting the overhead in creating threads, task execution is serialized, eliminating
the potential for unwanted interaction between multiple workers and excessive resource consumption.

We have to decide what to do, however, if the worker's already busy with previous task when a new
task comes along. Suppose in this situation we choose to block the caller until the previous task is
complete. Such a system can be implemented using two AutoResetEvent objects: a "ready"
AutoResetEvent that's Set by the worker when it's ready, and a "go" AutoResetEvent that's Set by
the calling thread when there's a new task. In the example below, a simple string field is used to
describe the task (declared using the volatile keyword to ensure both threads always see the same
version):

class AcknowledgedWaitHandle {
 static EventWaitHandle ready = new AutoResetEvent (false);
 static EventWaitHandle go = new AutoResetEvent (false);
 static volatile string task;

 static void Main() {
 new Thread (Work).Start();

 // Signal the worker 5 times
 for (int i = 1; i <= 5; i++) {
 ready.WaitOne(); // First wait until worker is ready
 task = "a" .PadRight (i, 'h'); // Assign a task
 go.Set(); // Tell worker to go!
 }

 // Tell the worker to end using a null-task
 ready.WaitOne(); task = null ; go.Set();
 }

 static void Work() {
 while (true) {
 ready.Set(); // Indicate that we're ready
 go.WaitOne(); // Wait to be kicked off...
 if (task == null) return ; // Gracefully exit
 Console .WriteLine (task);
 }
 }
}

ah
ahh
ahhh
ahhhh

 28

Notice that we assign a null task to signal the worker thread to exit. Calling Interrupt or Abort on the
worker's thread in this case would work equally well – providing we first called ready.WaitOne.
This is because after calling ready.WaitOne we can be certain on the location of the worker – either
on or just before the go.WaitOne statement – and thereby avoid the complications of interrupting
arbitrary code. Calling Interrupt or Abort would also also require that we caught the consequential
exception in the worker.

Producer/Consumer Queue

Another common threading scenario is to have a background worker process tasks from a queue. This
is called a Producer/Consumer queue: the producer enqueues tasks; the consumer dequeues tasks on a
worker thread. It's rather like the previous example, except that the caller doesn't get blocked if the
worker's already busy with a task.

A Producer/Consumer queue is scaleable, in that multiple consumers can be created – each servicing
the same queue, but on a separate thread. This is a good way to take advantage of multi-processor
systems while still restricting the number of workers so as to avoid the pitfalls of unbounded
concurrent threads (excessive context switching and resource contention).

In the example below, a single AutoResetEvent is used to signal the worker, which waits only if it
runs out of tasks (when the queue is empty). A generic collection class is used for the queue, whose
access must be protected by a lock to ensure thread-safety. The worker is ended by enqueing a null
task:

using System;
using System.Threading;
using System.Collections.Generic;

class ProducerConsumerQueue : IDisposable {
 EventWaitHandle wh = new AutoResetEvent (false);
 Thread worker;
 object locker = new object ();
 Queue<string > tasks = new Queue<string >();

 public ProducerConsumerQueue() {
 worker = new Thread (Work);
 worker.Start();
 }

 public void EnqueueTask (string task) {
 lock (locker) tasks.Enqueue (task);
 wh. Set();
 }

 public void Dispose() {
 EnqueueTask (null); // Signal the consumer to exit.
 worker.Join(); // Wait for the consumer's thread to finish.
 wh. Close(); // Release any OS resources.
 }

 void Work() {
 while (true) {
 string task = null ;
 lock (locker)
 if (tasks.Count > 0) {
 task = tasks.Dequeue();
 if (task == null) return ;
 }
 if (task != null) {

 29

 Console .WriteLine ("Performing task: " + task);
 Thread .Sleep (1000); // simulate work...
 }
 else
 wh. WaitOne(); // No more tasks - wait for a signal
 }
 }
}

Here's a main method to test the queue:

class Test {
 static void Main() {
 using (ProducerConsumerQueue q = new ProducerConsumerQueue ()) {
 q.EnqueueTask ("Hello");
 for (int i = 0; i < 10; i++) q.EnqueueTask ("Say " + i);
 q.EnqueueTask ("Goodbye!");
 }
 // Exiting the using statement calls q's Dispose me thod, which
 // enqueues a null task and waits until the consume r finishes.
 }
}

Performing task: Hello
Performing task: Say 1
Performing task: Say 2
Performing task: Say 3

...

...
Performing task: Say 9
Goodbye!

Note that in this example we explicitly close the Wait Handle when our ProducerConsumerQueue
is disposed – since we could potentially create and destroy many instances of this class within the life
of the application.

ManualResetEvent
A ManualResetEvent is a variation on AutoResetEvent. It differs in that it doesn't automatically
reset after a thread is let through on a WaitOne call, and so functions like a gate: calling Set opens
the gate, allowing any number of threads that WaitOne at the gate through; calling Reset closes the
gate, causing, potentially, a queue of waiters to accumulate until its next opened.

One could simulate this functionality with a boolean "gateOpen" field (declared with the volatile
keyword) in combination with " spin-sleeping" – repeatedly checking the flag, and then sleeping for
a short period of time.

ManualResetEvents are sometimes used to signal that a particular operation is complete, or that a
thread's completed initialization and is ready to perform work.

Mutex
Mutex provides the same functionality as C#'s lock statement, making Mutex mostly redundant. Its
one advantage is that it can work across multiple processes – providing a computer-wide lock rather
than an application-wide lock.

 30

With a Mutex class, the WaitOne method obtains the exclusive lock, blocking if it's contended. The
exclusive lock is then released with the ReleaseMutex method. Just like with C#'s lock statement, a
Mutex can only be released from the same thread that obtained it.

A common use for a cross-process Mutex is to ensure that only instance of a program can run at a
time. Here's how it's done:

class OneAtATimePlease {
 // Use a name unique to the application (eg include your company URL)
 static Mutex mutex = new Mutex (false , "oreilly.com OneAtATimeDemo");

 static void Main() {
 // Wait 5 seconds if contended – in case another in stance
 // of the program is in the process of shutting dow n.

 if (!mutex. WaitOne (TimeSpan .FromSeconds (5), false)) {
 Console .WriteLine ("Another instance of the app is running. Bye!");
 return ;
 }
 try {
 Console .WriteLine ("Running - press Enter to exit");
 Console .ReadLine();
 }
 finally { mutex. ReleaseMutex(); }
 }
}

A good feature of Mutex is that if the application terminates without ReleaseMutex first being
called, the CLR will release the Mutex automatically.

Semaphore
A Semaphore is like a nightclub: it has a certain capacity, enforced by a bouncer. Once full, no more
people can enter the nightclub and a queue builds up outside. Then, for each person that leaves, one
person can enter from the head of the queue. The constructor requires a minimum of two arguments –
the number of places currently available in the nightclub, and the nightclub's total capacity.

A Semaphore with a capacity of one is similar to a Mutex or lock, except that the Semaphore has
no "owner" – it's thread-agnostic. Any thread can call Release on a Semaphore, while with Mutex
and lock, only the thread that obtained the resource can release it.

In this following example, ten threads execute a loop with a Sleep statement in the middle. A
Semaphore ensures that not more than three threads can execute that Sleep statement at once:

While Mutex is reasonably fast, lock is a hundred times faster again. Acquiring a Mutex takes
a few microseconds; acquiring a lock takes tens of nanoseconds (assuming no blocking).

 31

class SemaphoreTest {
 static Semaphore s = new Semaphore (3, 3); // Available=3; Capacity=3

 static void Main() {
 for (int i = 0; i < 10; i++) new Thread (Go).Start();
 }

 static void Go() {
 while (true) {
 s. WaitOne();
 Thread .Sleep (100); // Only 3 threads can get here at once
 s. Release();
 }
 }
}

WaitAny, WaitAll and SignalAndWait
In addition to the Set and WaitOne methods, there are static methods on the WaitHandle class to
crack more complex synchronization nuts.

The WaitAny , WaitAll and SignalAndWait methods facilitate waiting across multiple Wait
Handles, potentially of differing types.

SignalAndWait is perhaps the most useful: it calls WaitOne on one WaitHandle, while calling Set
on another WaitHandle – in an atomic operation. One can use method this on a pair of
EventWaitHandles to set up two threads so they "meet" at the same point in time, in a textbook
fashion. Either AutoResetEvent or ManualResetEvent will do the trick. The first thread does the
following:

WaitHandle .SignalAndWait (wh1, wh2);

while the second thread does the opposite:

WaitHandle .SignalAndWait (wh2, wh1);

WaitHandle.WaitAny waits for any one of an array of wait handles; WaitHandle.WaitAll waits on
all of the given handles. Using the ticket turnstile analogy, these methods are like simultaneously
queuing at all the turnstiles – going through at the first one to open (in the case of WaitAny), or
waiting until they all open (in the case of WaitAll).

WaitAll is actually of dubious value because of a weird connection to apartment threading – a
throwback from the legacy COM architecture. WaitAll requires that the caller be in a multi-threaded
apartment – which happens to be the apartment model least suitable for interoperability – particularly
for Windows Forms applications, which need to perform tasks as mundane as interacting with the
clipboard!

Fortunately, the .NET framework provides a more advanced signaling mechanism for when Wait
Handles are awkward or unsuitable – Monitor.Wait and Monitor.Pulse.

 32

Synchronization Contexts
Rather than locking manually, one can lock declaratively. By deriving from ContextBoundObject
and applying the Synchronization attribute, one instructs the CLR to apply locking automatically.
Here's an example:

using System;
using System.Threading;
using System.Runtime.Remoting.Contexts;

[Synchronization]
public class AutoLock : ContextBoundObject {
 public void Demo() {
 Console .Write ("Start...");
 Thread .Sleep (1000); // We can't be preempted here
 Console .WriteLine ("end"); // thanks to automatic locking!
 }
}

public class Test {
 public static void Main() {
 AutoLock safeInstance = new AutoLock ();
 new Thread (safeInstance.Demo).Start(); // Call the Demo
 new Thread (safeInstance.Demo).Start(); // method 3 times
 safeInstance.Demo(); // concurrently.
 }
}

Start... end
Start... end
Start... end

The CLR ensures that only one thread can execute code in safeInstance at a time. It does this by
creating a single synchronizing object – and locking it around every call to each of safeInstance's
methods or properties. The scope of the lock – in this case – the safeInstance object – is called a
synchronization context.

So, how does this work? A clue is in the Synchronization attribute's namespace:
System.Runtime.Remoting.Contexts. A ContextBoundObject can be thought of as a "remote"
object – meaning all method calls are intercepted. To make this interception possible, when we
instantiate AutoLock , the CLR actually returns a proxy – an object with the same methods and
properties of an AutoLock object, which acts as an intermediary. It's via this intermediary that the
automatic locking takes place. Overall, the interception adds around a microsecond to each method
call.

The locking is applied internally in the same way. You might expect that the following example will
yield the same result as the last:

Automatic synchronization cannot be used to protect static type members, nor classes not
derived from ContextBoundObject (for instance, a Windows Form).

 33

[Synchronization]
public class AutoLock : ContextBoundObject {
 public void Demo() {
 Console .Write ("Start...");
 Thread .Sleep (1000);
 Console .WriteLine ("end");
 }

 public void Test() {
 new Thread (Demo).Start();
 new Thread (Demo).Start();
 new Thread (Demo).Start();
 Console .ReadLine();
 }

 public static void Main() {
 new AutoLock().Test();
 }
}

(Notice that we've sneaked in a Console.ReadLine statement). Because only one thread can execute
code at a time in an object of this class, the three new threads will remain blocked at the Demo
method until the Test method finishes – which requires the ReadLine to complete. Hence we end up
with the same result as before, but only after pressing the Enter key. This is a thread-safety hammer
almost big enough to preclude any useful multithreading within a class!

Furthermore, we haven't solved a problem described earlier: if AutoLock were a collection class, for
instance, we'd still require a lock around a statement such as the following, assuming it ran from
another class:

if (safeInstance.Count > 0) safeInstance.RemoveAt (0) ;

unless this code's class was itself a synchronized ContextBoundObject!

A synchronization context can extend beyond the scope of a single object. By default, if a
synchronized object is instantiated from within the code of another, both share the same context (in
other words, one big lock!) This behavior can be changed by specifying an integer flag in
Synchronization attribute's constructor, using one of the constants defined in the
SynchronizationAttribute class:

Constant Meaning

NOT_SUPPORTED Equivalent to not using the Synchronized attribute

SUPPORTED Joins the existing synchronization context if instantiated from another
synchronized object, otherwise remains unsynchronized

REQUIRED
(default)

Joins the existing synchronization context if instantiated from another
synchronized object, otherwise creates a new context

REQUIRES_NEW Always creates a new synchronization context

So if object of class SynchronizedA instantiates an object of class SynchronizedB, they'll be given
separate synchronization contexts if SynchronizedB is declared as follows:

 34

[Synchronization (SynchronizationAttribute . REQUIRES_NEW)]
public class SynchronizedB : ContextBoundObject { ...

The bigger the scope of a synchronization context, the easier it is to manage, but the less the
opportunity for useful concurrency. At the other end of the scale, separate synchronization contexts
invite deadlocks. Here's an example:

[Synchronization]
public class Deadlock : ContextBoundObject {
 public DeadLock Other;
 public void Demo() { Thread .Sleep (1000); Other.Hello(); }
 void Hello() { Console .WriteLine ("hello"); }
}

public class Test {
 static void Main() {
 Deadlock dead1 = new Deadlock ();
 Deadlock dead2 = new Deadlock ();
 dead1.Other = dead2;
 dead2.Other = dead1;
 new Thread (dead1.Demo).Start();
 dead2.Demo();
 }
}

Because each instance of Deadlock is created within Test – an unsynchronized class – each instance
will gets its own synchronization context, and hence, its own lock. When the two objects call upon
each other, it doesn't take long for the deadlock to occur (one second, to be precise!) The problem
would be particularly insidious if the Deadlock and Test classes were written by different
programming teams. It may be unreasonable to expect those responsible for the Test class to be even
aware of their transgression, let alone know how to go about resolving it. This is in contrast to explicit
locks, where deadlocks are usually more obvious.

Reentrancy
A thread-safe method is sometimes called reentrant, because it can be preempted part way through its
execution, and then called again on another thread without ill effect. In a general sense, the terms
thread-safe and reentrant are considered either synonymous or closely related.

Reentrancy, however, has another more sinister connotation in automatic locking regimes. If the
Synchronization attribute is applied with the reentrant argument true:

[Synchronization (true)]

then the synchronization context's lock will be temporarily released when execution leaves the
context. In the previous example, this would prevent the deadlock from occurring; obviously
desirable. However, a side effect is that during this interim, any thread is free to call any method on
the original object ("re-entering" the synchronization context) and unleashing the very complications
of multithreading one is trying to avoid in the first place. This is the problem of reentrancy.

 35

While reentrancy can be dangerous, there are sometimes few other options. For instance, suppose one
was to implement multithreading internally within a synchronized class, by delegating the logic to
workers running objects in separate contexts. These workers may be unreasonably hindered in
communicating with each other or the original object without reentrancy.

This highlights a fundamental weakness with automatic synchronization: the extensive scope over
which locking is applied can actually manufacture difficulties that may never have otherwise arisen.
These difficulties – deadlocking, reentrancy, and emasculated concurrency – can make manual
locking more palatable in anything other than simple scenarios.

Because [Synchronization(true)] is applied at a class-level, this attribute turns every out-of-
context method call made by the class into a Trojan for reentrancy.

 36

PART 3
USING THREADS

Apartments and Windows Forms
Apartment threading is an automatic thread-safety regime, closely allied to COM – Microsoft's
legacy Component Object Model. While .NET largely breaks free of legacy threading models, there
are times when it still crops up because of the need to interoperate with older APIs. Apartment
threading is most relevant to Windows Forms, because much of Windows Forms uses or wraps the
long-standing Win32 API – complete with its apartment heritage.

An apartment is a logical "container" for threads. Apartments come in two sizes – "single" and
"multi". A single-threaded apartment contains just one thread; multi-threaded apartments can contain
any number of threads. The single-threaded model is the more common and interoperable of the two.

As well as containing threads, apartments contain objects. When an object is created within an
apartment, it stays there all its life, forever house-bound along with the resident thread(s). This is
similar to an object being contained within a .NET synchronization context, except that a
synchronization context does not own or contain threads. Any thread can call upon an object in any
synchronization context – subject to waiting for the exclusive lock. But objects contained within an
apartment can only be called upon by a thread within the apartment.

Imagine a library, where each book represents an object. Borrowing is not permitted – books created
in the library stay there for life. Furthermore, let's use a person to represent a thread.

A synchronization context library allows any person to enter, as long as only one person enters at a
time. Any more, and a queue forms outside the library.

An apartment library has resident staff – a single librarian for a single-threaded library, and whole
team for a multi-threaded library. No-one is allowed in other than members of staff – a patron
wanting to perform research must signal a librarian, then ask the librarian to do the job! Signaling the
librarian is called marshalling – the patron marshals the method call over to a member of staff (or,
the member of staff!) Marshalling is automatic, and is implemented at the librarian-end via a message
pump – in Windows Forms, this is the mechanism that constantly checks for keyboard and mouse
events from the operating system. If messages arrive too quickly to be processed, they enter a
message queue, so they can be processed in the order they arrive.

Specifying an Apartment Model
A .NET thread is automatically assigned an apartment upon entering apartment-savvy Win32 or
legacy COM code. By default, it will be allocated a multi-threaded apartment, unless one requests a
single-threaded apartment as follows:

Thread t = new Thread (...);
t.SetApartmentState (ApartmentState .STA);

One can also request that the main thread join a single-threaded apartment using the STAThread
attribute on the main method:

 37

class Program {
 [STAThread]
 static void Main() {
 ...

Apartments have no effect while executing pure .NET code. In other words, two threads with an
apartment state of STA can simultaneously call the same method on the same object, and no
automatic marshalling or locking will take place. Only when execution hits unmanaged code can they
kick in.

The types in the System.Windows.Forms namespace extensively call Win32 code designed to work
in a single-threaded apartment. For this reason, a Windows Forms program should have have the
[STAThread] attribute on its main method, otherwise one of two things will occur upon reaching
Win32 UI code:

• it will marshal over to a single-threaded apartment

• it will crash

Control.Invoke
In a multi-threaded Windows Forms application, it's illegal to call a method or property on a control
from any thread other than the one that created it. All cross-thread calls must be explicitly marshalled
to the thread that created the control (usually the main thread), using the Control.Invoke or
Control.BeginInvoke method. One cannot rely on automatic marshalling because it takes place too
late – only when execution gets well into unmanaged code, by which time plenty of internal .NET
code may already have run on the "wrong" thread – code which is not thread-safe.

An excellent solution to managing worker threads in Windows Forms and WPF applications is to use
BackgroundWorker. This class wraps worker threads that need to report progress and completion, and
automatically calls Control.Invoke or Dispatcher.Invoke as required.

BackgroundWorker
BackgroundWorker is a helper class in the System.ComponentModel namespace for managing
a worker thread. It provides the following features:

• A "cancel" flag for signaling a worker to end without using Abort

• A standard protocol for reporting progress, completion and cancellation

• An implementation of IComponent allowing it be sited in the Visual Studio Designer

• Exception handling on the worker thread

• The ability to update Windows Forms and WPF controls in response to worker

WPF is similar to Windows Forms in that elements can be accessed only from the thread that
originally created them. The equivalent to Control.Invoke in WPF is Dispatcher.Invoke.

 38

progress or completion.

The last two features are particularly useful – it means you don't have to include a try/catch block
in your worker method, and can update Windows Forms and WPF controls without needing to call
Control.Invoke.

BackgroundWorker uses the thread-pool, which recycles threads to avoid recreating them for
each new task. This means one should never call Abort on a BackgroundWorker thread.

Here are the minimum steps in using BackgroundWorker :

• Instantiate BackgroundWorker , and handle the DoWork event

• Call RunWorkerAsync, optionally with an object argument.

This then sets it in motion. Any argument passed to RunWorkerAsync will be forwarded to
DoWork 's event handler, via the event argument's Argument property. Here's an example:

class Program {
 static BackgroundWorker bw = new BackgroundWorker ();
 static void Main() {
 bw. DoWork += bw_DoWork;
 bw. RunWorkerAsync ("Message to worker");
 Console .ReadLine();
 }

 static void bw_DoWork (object sender, DoWorkEventArgs e) {
 // This is called on the worker thread
 Console .WriteLine (e.Argument); // writes "Message to worker"
 // Perform time-consuming task...
 }

BackgroundWorker also provides a RunWorkerCompleted event which fires after the DoWork
event handler has done its job. Handling RunWorkerCompleted is not mandatory, but one usually
does so in order to query any exception that was thrown in DoWork. Furthermore, code within a
RunWorkerCompleted event handler is able to update Windows Forms and WPF controls without
explicit marshalling; code within the DoWork event handler cannot.

To add support for progress reporting:

• Set the WorkerReportsProgress property to true

• Periodically call ReportProgress from within the DoWork event handler with a
"percentage complete" value, and optionally, a user-state object

• Handle the ProgressChanged event, quering its event argument's ProgressPercentage
property

Code in the ProgressChanged event handler is free to interact with UI controls just as with
RunWorkerCompleted. This is typically where you will update a progress bar.

To add support for cancellation:

• Set the WorkerSupportsCancellation property to true

• Periodically check the CancellationPending property from within the DoWork event
handler – if true, set the event argument's Cancel property true, and return. (The worker
can set Cancel true and exit without prompting via CancellationPending – if it decides
the job's too difficult and it can't go on).

 39

• Call CancelAsync to request cancellation.

Here's an example that implements all the above features:

using System;
using System.Threading;
using System.ComponentModel;

class Program {
 static BackgroundWorker bw;
 static void Main() {
 bw = new BackgroundWorker ();
 bw. WorkerReportsProgress = true ;
 bw. WorkerSupportsCancellation = true ;
 bw.DoWork += bw_DoWork;
 bw. ProgressChanged += bw_ProgressChanged;
 bw. RunWorkerCompleted += bw_RunWorkerCompleted;

 bw.RunWorkerAsync ("Hello to worker");

 Console .WriteLine ("Press Enter in next 5 seconds to cancel");
 Console .ReadLine();
 if (bw. IsBusy) bw. CancelAsync();
 Console .ReadLine();
 }

 static void bw_DoWork (object sender, DoWorkEventArgs e) {
 for (int i = 0; i <= 100; i += 20) {
 if (bw. CancellationPending) {
 e. Cancel = true ;
 return ;
 }
 bw. ReportProgress (i);
 Thread .Sleep (1000);
 }
 e .Result = 123; // This gets passed to RunWorkerCopmleted
 }

 static void bw_RunWorkerCompleted (object sender,
 RunWorkerCompletedEventArgs e) {
 if (e. Cancelled)
 Console .WriteLine ("You cancelled!");
 else if (e. Error != null)
 Console .WriteLine ("Worker exception: " + e.Error.ToString());
 else
 Console .WriteLine ("Complete - " + e. Result); // from DoWork
 }

 static void bw_ProgressChanged (object sender,
 ProgressChangedEventArgs e) {
 Console .WriteLine ("Reached " + e. ProgressPercentage + "%");
 }
}

 40

Press Enter in the next 5 seconds to cancel
Reached 0%
Reached 20%
Reached 40%
Reached 60%
Reached 80%
Reached 100%
Complete – 123

Press Enter in the next 5 seconds to cancel
Reached 0%
Reached 20%
Reached 40%

You cancelled!

Subclassing BackgroundWorker

BackgroundWorker is not sealed and provides a virtual OnDoWork method, suggesting another
pattern for its use. When writing a potentially long-running method, one could instead – or as well –
write a version returning a subclassed BackgroundWorker , pre-configured to perform the job
asynchronously. The consumer then only need handle the RunWorkerCompleted and
ProgressChanged events. For instance, suppose we wrote a time-consuming method called
GetFinancialTotals:

public class Client {
 Dictionary < string , int > GetFinancialTotals (int foo, int bar) { ... }
 ...
}

We could refactor it as follows:

public class Client {
 public FinancialWorker GetFinancialTotalsBackground (int foo, int bar) {
 return new FinancialWorker (foo, bar);
 }
}

public class FinancialWorker : BackgroundWorker {
 public Dictionary < string , int > Result; // We can add typed fields.
 public volatile int Foo, Bar; // We could even expose them
 // via p roperties with locks!
 public FinancialWorker() {
 WorkerReportsProgress = true ;
 WorkerSupportsCancellation = true ;
 }

 public FinancialWorker (int foo, int bar) : this () {
 this .Foo = foo; this .Bar = bar;
 }

 41

 protected override void OnDoWork (DoWorkEventArgs e) {
 ReportProgress (0, "Working hard on this report...");

 Initialize financial report data

 while (! finished report) {
 if (CancellationPending) {
 e.Cancel = true ;
 return ;
 }

 Perform another calculation step

 ReportProgress (percentCompleteCalc, "Getting there...");
 }
 ReportProgress (100, "Done!");

 e.Result = Result = completed report data;
 }
}

Whoever calls GetFinancialTotalsBackground then gets a FinancialWorker – a wrapper to
manage the background operation with real-world usability. It can report progress, be cancelled, and
is compatible with Windows Forms without Control.Invoke. It's also exception-handled, and uses a
standard protocol (in common with that of anyone else using BackgroundWorker !)

This usage of BackgroundWorker effectively deprecates the old "event-based asynchronous
pattern".

ReaderWriterLockSlim / ReaderWriterLock
Quite often, instances of a type are thread-safe for concurrent read operations, but not for concurrent
updates (nor for a concurrent read and update). This can also be true with resources such as a file.
Although protecting instances of such types with a simple exclusive lock for all modes of access
usually does the trick, it can unreasonably restrict concurrency if there are many readers and just
occasional updates. An example of where this could occur is in a business application server, where
commonly used data is cached for fast retrieval in static fields. The ReaderWriterLockSlim class is
designed to provide maximum-availability locking in just this scenario.

With both classes, there are two basic kinds of lock: a read lock and a write lock. A write lock is
universally exclusive, whereas a read lock is compatible with other read locks.

So, a thread holding a write lock blocks all other threads trying to obtain a read or write lock (and
vice versa). But if no thread holds a write lock, any number of threads may concurrently obtain a
read lock.

ReaderWriterLockSlim defines the following methods for obtaining and releasing read/write locks:

public void EnterReadLock();
public void ExitReadLock();
public void EnterWriteLock();
public void ExitWriteLock();

ReaderWriterLockSlim is new to Framework 3.5 and is a replacement for the older “fat”
ReaderWriterLock class. The latter is similar in functionality, but is several times slower and
has an inherent design fault in its mechanism for handling lock upgrades.

 42

Additionally, there are “Try” versions of all EnterXXX methods which accept timeout arguments in
the style of Monitor.TryEnter (timeouts can occur quite easily if the resource is heavily contended).
ReaderWriterLock provides similar methods, named AcquireXXX and ReleaseXXX. These throw
an ApplicationException if a timeout occurs rather than returning false.

The following program demonstrates ReaderWriterLockSlim . Three threads continually enumerate
a list, while two further threads append a random number to the list every second. A read lock
protects the list readers and a write lock protects the list writers:

class SlimDemo
{
 static ReaderWriterLockSlim rw = new ReaderWriter LockSlim();
 static List<int> items = new List<int>();
 static Random rand = new Random();

 static void Main()
 {
 new Thread (Read).Start();
 new Thread (Read).Start();
 new Thread (Read).Start();

 new Thread (Write).Start ("A");
 new Thread (Write).Start ("B");
 }

 static void Read()
 {
 while (true)
 {
 rw.EnterReadLock();
 foreach (int i in items) Thread.Sleep (10);
 rw.ExitReadLock();
 }
 }

 static void Write (object threadID)
 {
 while (true)
 {
 int newNumber = GetRandNum (100);
 rw.EnterWriteLock();
 items.Add (newNumber);
 rw.ExitWriteLock();
 Console.WriteLine ("Thread " + threadID + " a dded " + newNumber);
 Thread.Sleep (100);
 }
 }

 static int GetRandNum (int max) { lock (rand) ret urn rand.Next (max); }
}

Here’s the result:

Thread B added 61
Thread A added 83

In production code, you’d typically add try /finally blocks to ensure locks were released if an
exception was thrown.

 43

Thread B added 55
Thread A added 33
...

ReaderWriterLockSlim allows more concurrent Read activity than would a simple lock. We can
illustrate this by inserting the following line to the Write method, at the start of the while loop:

Console.WriteLine (rw.CurrentReadCount + " concurre nt readers");

This nearly always prints “3 concurrent readers” (the Read methods spend most their time inside the
foreach loops). As well as CurrentReadCount, ReaderWriterLockSlim provides the following
properties for monitoring locks:

public bool IsReadLockHeld { get; }
public bool IsUpgradeableReadLockHeld { get; }
public bool IsWriteLockHeld { get; }

public int WaitingReadCount { get; }
public int WaitingUpgradeCount { get; }
public int WaitingWriteCount { get; }

public int RecursiveReadCount { get; }
public int RecursiveUpgradeCount { get; }
public int RecursiveWriteCount { get; }

Sometimes it’s useful to swap a read lock for a write lock in a single atomic operation. For instance,
suppose you wanted to add an item to a list only if the item wasn’t already present. Ideally, you’d
want to minimize the time spent holding the (exclusive) write lock, so you might proceed as follows:

1. Obtain a read lock

2. Test if the item is already present in the list, and if so, release the lock and return

3. Release the read lock

4. Obtain a write lock

5. Add the item

The problem is that another thread could sneak in and modify the list (adding the same item, for
instance) between steps 3 and 4. ReaderWriterLockSlim addresses this through a third kind of lock
called an upgradeable lock. An upgradeable lock is like a read lock except that it can later be
promoted to a write lock in an atomic operation. Here’s how you use it:

1. Call EnterUpgradeableReadLock

2. Perform read-based activities (e.g. test if item already present in list)

3. Call EnterWriteLock (this converts the upgradeable lock to a write lock)

4. Perform write-based activities (e.g. add item to list)

5. Call ExitWriteLock (this converts the write lock back to an upgradeable lock)

6. Perform any other read-based activities

7. Call ExitUpgradeableReadLock

From the caller’s perspective, it’s rather like nested or recursive locking. Functionally, though, in step
3, ReaderWriterLockSlim releases your read-lock and obtains a fresh write-lock, atomically.

 44

There’s another important difference between upgradeable locks and read locks. While an upgradable
lock can coexist with any number of read locks, only one upgradeable lock can itself be taken out at a
time. This prevents conversion deadlocks by serializing competing conversions—just as update locks
do in SQL Server:

SQL Server ReaderWriterLockSlim

Share lock Read lock

Exclusive lock Write lock

Update lock Upgradeable lock

We can demonstrate an upgradeable lock by by changing the Write method in the preceding example
such that it adds a number to list only if not already present:

while (true)
{
 int newNumber = GetRandNum (100);
 rw.EnterUpgradeableReadLock();
 if (!items.Contains (newNumber))
 {
 rw.EnterWriteLock();
 items.Add (newNumber);
 rw.ExitWriteLock();
 Console.WriteLine ("Thread " + threadID + " add ed " + newNumber);
 }
 rw.ExitUpgradeableReadLock();
 Thread.Sleep (100);
}

Lock recursion
Ordinarily, nested or recursive locking is prohibited with ReaderWriterLockSlim. Hence, the
following throws an exception:

var rw = new ReaderWriterLockSlim();
rw.EnterReadLock();
rw.EnterReadLock();
rw.ExitReadLock();
rw.ExitReadLock();

It runs without error, however, if you construct ReaderWriterLockSlim as follows:

var rw = new ReaderWriterLockSlim (LockRecursionPolicy.SupportsRecursion);

This ensures that recursive locking can happen only if you plan for it. Recursive locking can bring
undesired complexity because it’s possible to acquire more than one kind of lock:

rw.EnterWriteLock();
rw.EnterReadLock();
Console.WriteLine (rw.IsReadLockHeld); // True
Console.WriteLine (rw.IsWriteLockHeld); // True

ReaderWriterLock can also do lock conversions—but unreliably because it doesn’t support
the concept of upgradeable locks. This is why the designers of ReaderWriterLockSlim had to
start afresh with a new class.

 45

rw.ExitReadLock();
rw.ExitWriteLock();

The basic rule is that once you’ve acquired a lock, subsequent recursive locks can less, but not
greater, on the following scale:

 Read Lock --> Upgradeable Lock --> Write Lock

A request to promote an upgradeable lock to a write lock, however, is always legal.

Thread Pooling
If your application has lots of threads that spend most of their time blocked on a Wait Handle, you
can reduce the resource burden via thread pooling. A thread pool economizes by coalescing many
Wait Handles onto a few threads.

To use the thread pool, you register a Wait Handle along with a delegate to be executed when the
Wait Handle is signaled. This is done by calling ThreadPool.RegisterWaitForSingleObject, such in
this example:

class Test {
 static ManualResetEvent starter = new ManualResetEvent (false);

 public static void Main() {
 ThreadPool . RegisterWaitForSingleObject (starter, Go,
 "hello" , -1, true);
 Thread .Sleep (5000);
 Console .WriteLine ("Signaling worker...");
 starter.Set();
 Console .ReadLine();
 }

 public static void Go (object data, bool timedOut) {
 Console .WriteLine ("Started " + data);
 // Perform task...
 }
}

(5 second delay)
Signaling worker...
Started hello

In addition to the Wait Handle and delegate, RegisterWaitForSingleObject accepts a "black box"
object which it passes to your delegate method (rather like with a ParameterizedThreadStart), as well
as a timeout in milliseconds (-1 meaning no timeout) and a boolean flag indicating if the request is
one-off rather than recurring.

All pooled threads are background threads, meaning they terminate automatically when the
application's foreground thread(s) end. However if one wanted to wait until any important jobs
running on pooled threads completed before exiting an application, calling Join on the threads would
not be an option, since pooled threads never finish! The idea is that they are instead recycled, and end
only when the parent process terminates. So in order to know when a job running on a pooled thread
has finished, one must signal – for instance, with another Wait Handle.

 46

You can also use the thread pool without a Wait Handle by calling the QueueUserWorkItem
method – specifying a delegate for immediate execution. You don't then get the saving of sharing
threads amongst multiple jobs, but do get another benefit: the thread pool keeps a lid on the total
number of threads (25, by default), automatically enqueuing tasks when the job count goes above this.
It's rather like an application-wide producer-consumer queue with 25 consumers! In the following
example, 100 jobs are enqueued to the thread pool, of which 25 execute at a time. The main thread
then waits until they're all complete using Wait and Pulse:

class Test {
 static object workerLocker = new object ();
 static int runningWorkers = 100;

 public static void Main() {
 for (int i = 0; i < runningWorkers; i++) {
 ThreadPool . QueueUserWorkItem (Go, i);
 }
 Console .WriteLine ("Waiting for threads to complete...");
 lock (workerLocker) {
 while (runningWorkers > 0) Monitor .Wait (workerLocker);
 }
 Console .WriteLine ("Complete!");
 Console .ReadLine();
 }

 public static void Go (object instance) {
 Console .WriteLine ("Started: " + instance);
 Thread .Sleep (1000);
 Console .WriteLine ("Ended: " + instance);
 lock (workerLocker) {
 runningWorkers--; Monitor .Pulse (workerLocker);
 }
 }
}

In order to pass more than a single object to the target method, one can either define a custom object
with all the required properties, or call via an anonmymous method. For instance, if the Go method
accepted two integer parameters, it could be started as follows:

ThreadPool .QueueUserWorkItem (delegate (object notUsed) { Go (23,34); });

Another way into the thread pool is via asynchronous delegates.

Asynchronous Delegates
In Part 1 we described how to pass data to a thread, using ParameterizedThreadStart. Sometimes you
need to go the other way, and get return values back from a thread when it finishes executing.
Asynchronous delegates offer a convenient mechanism for this, allowing any number of typed
arguments to be passed in both directions. Furthermore, unhandled exceptions on asynchronous
delegates are conveniently re-thrown on the original thread, and so don't need explicit handling.
Asynchronous delegates also provide another way into the thread pool.

Calling Abort on a pooled thread is Bad Idea. The threads need to be recycled for the life of
the application domain.

 47

The price you must pay for all this is in following its asynchronous model. To see what this means,
we'll first discuss the more usual, synchronous, model of programming. Let's say we want to compare
two web pages. We could achieve this by downloading each page in sequence, then comparing their
output as follows:

static void ComparePages() {
 WebClient wc = new WebClient ();
 string s1 = wc.DownloadString ("http://www.oreilly.com");
 string s2 = wc.DownloadString ("http://oreilly.com");
 Console .WriteLine (s1 == s2 ? "Same" : "Different");
}

Of course it would be faster if both pages downloaded at once. One way to view the problem is to
blame DownloadString for blocking the calling method while the page is downloading. It would be
nice if we could call DownloadString in a non-blocking asynchronous fashion, in other words:

1. We tell DownloadString to start executing.

2. We perform other tasks while it's working, such as downloading another page.

3. We ask DownloadString for its results.

The third step is what makes asynchronous delegates useful. The caller rendezvous with the worker to
get results and to allow any exception to be re-thrown. Without this step, we have normal
multithreading. While it's possible to use asynchronous delegates without the rendezvous, you gain
little over calling ThreadPool.QueueWorkerItem or using BackgroundWorker.

Here's how we can use asynchronous delegates to download two web pages, while simultaneously
performing a calculation:

delegate string DownloadString (string uri);

static void ComparePages() {

 // Instantiate delegates with DownloadString's si gnature:
 DownloadString download1 = new WebClient ().DownloadString;
 DownloadString download2 = new WebClient ().DownloadString;

 // Start the downloads:
 IAsyncResult cookie1 = download1.BeginInvoke (uri1, null , null);
 IAsyncResult cookie2 = download2.BeginInvoke (uri2, null , null);

 // Perform some random calculation:
 double seed = 1.23;
 for (int i = 0; i < 1000000; i++) seed = Math .Sqrt (seed + 1000);

 // Get the results of the downloads, waiting for completion if necessary.
 // Here's where any exceptions will be thrown:
 string s1 = download1.EndInvoke (cookie1);
 string s2 = download2.EndInvoke (cookie2);

 Console .WriteLine (s1 == s2 ? "Same" : "Different");
}

The WebClient class actually offers a built-in method called DownloadStringAsync which
provides asynchronous-like functionality. For now, we'll ignore this and focus on the
mechanism by which any method can be called asynchronously.

 48

We start by declaring and instantiating delegates for methods we want to run asynchronously. In this
example, we need two delegates so that each can reference a separate WebClient object (WebClient
does not permit concurrent access—if it did, we could use a single delegate throughout).

We then call BeginInvoke. This begins execution while immediately returning control to the caller.
In accordance with our delegate, we must pass a string to BeginInvoke (the compiler enforces this,
by manufacturing typed BeginInvoke and EndInvoke methods on the delegate type).

BeginInvoke requires two further arguments—an optional callback and data object; these can be left
null as they're usually not required. BeginInvoke returns an IASynchResult object which acts as a
cookie for calling EndInvoke. The IASynchResult object also has the property IsCompleted which
can be used to check on progress.

We then call EndInvoke on the delegates, as their results are needed. EndInvoke waits, if necessary,
until its method finishes, then returns the method's return value as specified in the delegate (string, in
this case). A nice feature of EndInvoke is that if the DownloadString method had any ref or out
parameters, these would be added into EndInvoke's signature, allowing multiple values to be sent
back by to the caller.

If at any point during an asynchronous method's execution an unhandled exception is encountered, it's
re-thrown on the caller's thread upon calling EndInvoke. This provides a tidy mechanism for
marshaling exceptions back to the caller.

Asynchronous Methods
Some types in the .NET Framework offer asynchronous versions of their methods, with names
starting with "Begin" and "End". These are called asynchronous methods and have signatures similar
to those of asynchronous delegates, but exist to solve a much harder problem: to allow more
concurrent activities than you have threads. A web or TCP sockets server, for instance, can process
several hundred concurrent requests on just a handful of pooled threads if written using
NetworkStream.BeginRead and NetworkStream.BeginWrite.

Unless you're writing a high concurrency application, however, you should avoid asynchronous
methods for a number of reasons:

• Unlike asynchronous delegates, asynchronous methods may not actually execute in
parallel with the caller

• The benefits of asynchronous methods erodes or disappears if you fail to follow the
pattern meticulously

• Things can get complex pretty quickly when you do follow the pattern correctly

If you're simply after parallel execution, you're better off calling the synchronous version of the
method (e.g. NetworkStream.Read) via an asynchronous delegate. Another option is to use
ThreadPool.QueueUserWorkItem or BackgroundWorker—or simply create a new thread.
Chapter 20 of C# 3.0 in a Nutshell explains asynchronous methods in detail.

If the method you're calling asynchronously has no return value, you are still (technically)
obliged to call EndInvoke. In a practical sense this is open to interpretation; the MSDN is
contradictory on this issue. If you choose not to call EndInvoke, however, you'll need to
consider exception handling on the worker method.

 49

Asynchronous Events
Another pattern exists whereby types can provide asynchronous versions of their methods. This is
called the "event-based asynchronous pattern" and is distinguished by a method whose name ends
with "Async", and a corresponding event whose name ends in "Completed". The WebClient class
employs this pattern in its DownloadStringAsync method. To use it, you first handle the
"Completed" event (e.g. DownloadStringCompleted) and then call the "Async" method (e.g.
DownloadStringAsync). When the method finishes, it calls your event handler. Unfortunately,
WebClient's implementation is flawed: methods such as DownloadStringAsync block the caller for
a portion of the download time.

The event-based pattern also offers events for progress reporting and cancellation, designed to be
friendly with Windows applications that update forms and controls. If you need these features in a
type that doesn't support the event-based asynchronous model (or doesn't support it correctly!) you
don't have to take on the burden of implementing the pattern yourself, however (and you wouldn't
want to!) All of this can be achieved more simply with the BackgroundWorker helper class.

Timers
The easiest way to execute a method periodically is using a timer – such as the Timer class provided
in the System.Threading namespace. The threading timer takes advantage of the thread pool,
allowing many timers to be created without the overhead of many threads. Timer is a fairly simple
class, with a constructor and just two methods (a delight for minimalists, as well as book authors!)

public sealed class Timer : MarshalByRefObject , IDisposable
{

 public Timer (TimerCallback tick, object state, 1st, subsequent);

 public bool Change (1st, subsequent); // To change the interval
 public void Dispose(); // To kill the timer
}

1st = time to the first tick in milliseconds or a Time Span

subsequent = subsequent intervals in milliseconds or a TimeSp an
 (use Timeout.Infinite for a one-off callback)

In the following example, a timer calls the Tick method which writes "tick..." after 5 seconds have
elapsed, then every second after that – until the user presses Enter:

using System;
using System.Threading;

class Program {
 static void Main() {
 Timer tmr = new Timer (Tick, "tick..." , 5000, 1000);
 Console .ReadLine();
 tmr.Dispose(); // End the timer
 }

 static void Tick (object data) {
 // This runs on a pooled thread
 Console .WriteLine (data); // Writes "tick..."
 }
}

The .NET framework provides another timer class of the same name in the System.Timers
namespace. This simply wraps System.Threading.Timer, providing additional convenience while

 50

using the same thread pool – and the identical underlying engine. Here's a summary of its added
features:

• A Component implementation, allowing it to be sited in the Visual Studio Designer

• An Interval property instead of a Change method

• An Elapsed event instead of a callback delegate

• An Enabled property to start and pause the timer (its default value being false)

• Start and Stop methods in case you're confused by Enabled

• an AutoReset flag for indicating a recurring event (default value true)

Here's an example:

using System;
using System.Timers; // Timers namespace rather than Threading

class SystemTimer {
 static void Main() {
 Timer tmr = new Timer (); // Doesn't require any args
 tmr. Interval = 500;
 tmr. Elapsed += tmr_Elapsed; // Uses an event instead of a delegate
 tmr. Start(); // Start the timer
 Console .ReadLine();
 tmr. Stop(); // Pause the timer
 Console .ReadLine();
 tmr. Start(); // Resume the timer
 Console .ReadLine();
 tmr. Dispose(); // Permanently stop the timer
 }

 static void tmr_Elapsed (object sender, EventArgs e) {
 Console .WriteLine ("Tick");
 }
}

The .NET framework provides yet a third timer – in the System.Windows.Forms namespace. While
similar to System.Timers.Timer in its interface, it's radically different in the functional sense. A
Windows Forms timer does not use the thread pool, instead firing its "Tick" event always on the same
thread that originally created the timer. Assuming this is the main thread – also responsible for
instantiating all the forms and controls in the Windows Forms application – the timer's event handler
is then able to interact with the forms and controls without violating thread-safety – or the impositions
of apartment-threading. Control.Invoke is not required. The Windows timer is, in effect, a single-
threaded timer.

Windows Forms and WPF timers are intended for jobs that may involve updating the user interface
and which execute quickly. Quick execution is important because the Tick event is called on the main
thread – which if tied up, will make the user interface unresponsive.

There's an equivalent single-threaded timer for WPF, called DispatcherTimer.

 51

Local Storage
Each thread gets a data store isolated from all other threads. This is useful for storing "out-of-band"
data – that which supports the execution path's infrastructure, such as messaging, transaction or
security tokens. Passing such data around via method parameters would be extremely clumsy and
would alienate all but your own methods; storing such information in static fields would mean
sharing it between all threads.

Thread.GetData reads from a thread's isolated data store; Thread.SetData writes to it. Both
methods require a LocalDataStoreSlot object to identify the slot – this is just a wrapper for a string
that names the slot – the same one can be used across all threads and they'll still get separate values.
For example:

class ... {
 // The same LocalDataStoreSlot object can be used
 // across all threads.
 LocalDataStoreSlot secSlot = Thread .GetNamedDataSlot
 ("securityLevel");

 // This property has a separate value on each threa d.
 int SecurityLevel {
 get {
 object data = Thread . GetData (secSlot);
 return data == null ? 0 : (int) data; // null == uninitialized
 }
 set {
 Thread . SetData (secSlot, value);
 }
 }
 ...

Thread.FreeNamedDataSlot will release a given data slot across all threads – but only once all
LocalDataStoreSlot objects of the same name have dropped out of scope and been garbage
collected. This ensures threads don't get data slots pulled out from under their feet – as long as they
keep a reference to the appropriate LocalDataStoreSlot object for as long as it's in use.

 52

PART 4
ADVANCED TOPICS

Non-Blocking Synchronization
Earlier, we said that the need for synchronization arises even the simple case of assigning or
incrementing a field. Although locking can always satisfy this need, a contended lock means that a
thread must block, suffering the overhead and latency of being temporarily descheduled, which can
be undesirable in highly concurrent and performance-critical scenarios. The .NET Framework’s
nonblocking synchronization constructs can perform simple operations without ever blocking,
pausing, or waiting.

The non-blocking approaches also work across multiple processes. An example of where this might
be useful is in reading and writing process-shared memory.

Memory Barriers and Volatility
Consider the following example:

class Foo
{
 int _answer;
 bool _complete;

 void A()
 {
 _answer = 123;
 _complete = true;
 }

 void B()
 {
 if (_complete) Console.WriteLine (_answer);
 }
}

If methods A and B ran concurrently on different threads, might it be possible to for B to write “0”?
The answer is yes—for the following reasons:

• The compiler, CLR or CPU may re-order your program's instructions to improve
efficiency.

• The compiler, CLR or CPU may introduce caching optimizations such that assignments to
variables won't be visible to other threads right away.

C# and the runtime are very careful to ensure that such optimizations don’t break ordinary single-
threaded code—or multithreaded code that makes proper use of locks. Outside of these scenarios, you

Writing nonblocking or lock-free multithreaded code properly is tricky! Memory barriers, in
particular, are easy to get wrong (the volatile keyword is even easier to get wrong). Think
carefully whether you really need the performance benefits before dismissing ordinary locks.

 53

must explicitly defeat these optimizations by creating memory barriers (also called memory fences) to
limit the effects of instruction reordering and read/write caching.

Full fences

The simplest kind of memory barrier is a full memory barrier (full fence) which prevents any kind of
instruction reordering or caching around that fence. Calling Thread.MemoryBarrier generates a full
fence; we can fix our example by applying four full fences as follows:

class Foo
{
 int _answer;
 bool _complete;

 void A()
 {
 _answer = 123;
 Thread.MemoryBarrier(); // Barrier 1
 _complete = true;
 Thread.MemoryBarrier(); // Barrier 2
 }

 void B()
 {
 Thread.MemoryBarrier(); // Barrier 3
 if (_complete)
 {
 Thread.MemoryBarrier(); // Barrier 4
 Console.WriteLine (_answer);
 }
 }
}

Barriers 1 and 4 prevent this example from writing “0”. Barriers 2 and 3 provide a freshness
guarantee: they ensure that if B ran after A, reading _complete would evaluate to true.

A full fence takes a few tens of nanoseconds.

You don’t necessarily need a full fence with every individual read or write. If we had three answer
fields, our example would still need only four fences:

The following implicitly generate full fences:

▪ C#'s lock statement (Monitor.Enter /Monitor.Exit)
▪ All methods on the Interlocked class (we’ll cover these soon)
▪ Asynchronous callbacks that use the thread pool — these include asynchronous delegates,
APM callbacks (and Framework 4.0's Task continuations)
▪ Setting and waiting on a signaling construct

 54

class Foo
{
 int _answer1, _answer2, _answer3;
 bool _complete;

 void A()
 {
 _answer1 = 1; _answer2 = 2; _answer3 = 3;
 Thread.MemoryBarrier();
 _complete = true;
 Thread.MemoryBarrier();
 }

 void B()
 {
 Thread.MemoryBarrier();
 if (_complete)
 {
 Thread.MemoryBarrier();
 Console.WriteLine (_answer1 + _answer2 + _ans wer3);
 }
 }
}

A good approach is start by putting memory barriers before and after every instruction that reads or
writes a shared field, and then strip away the ones that you don’t need. If you’re uncertain of any,
leave them in. Or better: switch back to using locks!

Do we Really Need Locks & Barriers?

Working with shared writable fields without locks or fences is asking for trouble. There’s a lot
of misleading information on this topic—including the MSDN documentation which states that
MemoryBarrier is required only on multiprocessor systems with weak memory ordering, such
as a system employing multiple Itanium processors. We can demonstrate that memory barriers
are important on ordinary Intel Core-2 and Pentium processors with the following short
program. You’ll need to run it with optimizations enabled and without a debugger (in Visual
Studio, select “Release Mode” in the solution’s configuration manager, and then start without
debugging):

static void Main()
{
 bool complete = false;
 var t = new Thread (() =>
 {
 bool toggle = false;
 while (!complete) toggle = !toggle;
 });
 t.Start();
 Thread.Sleep (1000);
 complete = true;
 t.Join(); // Blocks indefinitely
}

This program never terminates! Inserting a call to Thread.MemoryBarrier inside the while-
loop (or locking around reading complete) fixes the error.

 55

The volatile keyword

Another (more advanced) way to solve this problem is to apply the volatile keyword to the _complete
field:

volatile bool _complete;

The volatile keyword instructs the compiler to generate an acquire-fence on every read from that
field, and a release-fence on every write to that field. An acquire-fence prevents other reads/writes
from being moved before the fence; a release-fence prevents other reads/writes from being moved
after the fence. These “half-fences” are faster than full fences because they give the runtime and
hardware more scope for optimization.

The effect of applying volatile to fields can be summarized as follows:

First Instruction Second Instruction Can they be swapped?
Read Read No
Read Write No
Write Write No
Write Read Yes!

Notice that applying volatile doesn’t prevent a write followed by a read from being swapped, and this
can create brain-teasers. Joe Duffy illustrates the problem well with the following example: if Test1
and Test2 run simultaneously on different threads, it’s possible for a and b to both end up with a value
of 0 (despite the use of volatile on both x and y):

class IfYouThinkYouUnderstandVolatile
{
 volatile int x, y;

 void Test1() // Executed on one thread
 {
 x = 1; // Volatile write (release-fe nce)
 int a = y; // Volatile read (acquire-fen ce)
 ...
 }

 void Test2() // Executed on another thread
 {
 y = 1; // Volatile write (release-fe nce)
 int b = x; // Volatile read (acquire-fen ce)
 ...
 }
}

As it happens, X86 processors always apply acquire-fences to reads and release-fences to
writes—whether or not you use the volatile keyword, so this keyword has no effect on the X86
processor itself. However, volatile does has an effect on optimizations performed by the
compiler and CLR. This means that you cannot be more relaxed by virtue of your clients
running X86 processors.

(And even if you do use volatile, you should still maintain a healthy sense of anxiety, as we’ll
see shortly!)

 56

This presents a strong case for avoiding volatile: even if you understand the subtlety in this example,
will other developers working on your code also understand it? A full fence between each of the two
assignments in Test1 and Test2 (a or lock) solves the problem.

The volatile keyword is not supported with pass-by-reference arguments or captured local variables:
in these cases you must use the VolatileRead and VolatileWrite methods.

VolatileRead and VolatileWrite

The static VolatileRead and VolatileWrite methods in the Thread class read/write a variable while
enforcing (technically, a superset of) the guarantees made by the volatile keyword. Their
implementations are relatively inefficient, though, in that they actually generate full fences. Here are
their complete implementations for the integer type:

public static void VolatileWrite (ref int address, int value)
{
 MemoryBarrier(); address = value;
}

public static int VolatileRead (ref int address)
{
 int num = address; MemoryBarrier(); return num;
}

You can see from this that if you call VolatileWrite followed by VolatileRead, no barrier is
generated in the middle: this enables the same brain-teasing scenario that we saw earlier.

Memory barriers and locking

As we said earlier, Monitor.Enter and Monitor.Exit both generate full fences. So, if we ignore a
lock’s mutual exclusion guarantee, we could say that this:

lock (someField) { … }

is equivalent to:

Thread.MemoryBarrier(); { … } Thread.MemoryBarrier();

Atomicity and Interlocked
Use of memory barriers is not always enough when reading or writing fields in lock-free code.
Operations on 64-bit fields, increments and decrements require the heavier approach of using the
Interlocked helper class. Interlocked also provides the Exchange and CompareExchange methods,
the latter enabling lock-free read-modify-write operations, with a little additional coding.

A statement is intrinsically atomic if it executes as a single indivisible instruction on the underlying
processor. Strict atomicity precludes any possibility of preemption. A simple read or write on a field
of 32 bits or less is always atomic. Operations on 64-bit fields are guaranteed to be atomic only in a

The MSDN documentation states that use of the volatile keyword ensures that the most up-to-
date value is present in the field at all times. This is incorrect, since as we’ve seen, a write
followed by a read can be reordered.

 57

64-bit runtime environment, and statements that combine more than one read/write operation are
never atomic:

class Atomicity
{
 static int _x, _y;
 static long _z;

 static void Test()
 {
 long myLocal;
 _x = 3; // Atomic
 _z = 3; // Nonatomic on 32-bit envi rons (_z is 64 bits)
 myLocal = _z; // Nonatomic on 32-bit envi rons (_z is 64 bits)
 _y += _x; // Nonatomic (read AND writ e operation)
 _x++; // Nonatomic (read AND writ e operation)
 }
}

Reading and writing 64-bit fields is nonatomic on 32-bit environments because it requires two
separate instructions; one for each 32-bit memory location. So, if thread x reads a 64-bit value while
thread y is updating it, thread x may end up with a bitwise combination of the old and new values (a
torn read).

The compiler implements unary operators of the kind x++ by reading a variable, processing it, and
then writing it back. Consider the following class:

class ThreadUnsafe
{
 static int _x = 1000;
 static void Go() { for (int i = 0; i < 100; i++) _x--; }
}

Putting aside the issue of memory barriers, you might expect that if 10 threads concurrently run Go,
_x would end up as 0. However, this is not guaranteed, because a race condition is possible whereby
one thread preempts another in between retrieving _x’s current value, decrementing it, and writing it
back (resulting in an out-of-date value being written).

Of course, you can address these issues by wrapping the nonatomic operations in a lock statement.
Locking, in fact, simulates atomicity if consistently applied. The Interlocked class, however,
provides an easier and faster solution for such simple operations:

class Program
{
 static long _sum;

 static void Main()
 { // _sum
 // Simple increment/decrement operations:
 Interlocked.Increment (ref _sum); // 1
 Interlocked.Decrement (ref _sum); // 0

 // Add/subtract a value:
 Interlocked.Add (ref _sum, 3); // 3

 // Read a 64-bit field:
 Console.WriteLine (Interlocked.Read (ref _sum)) ; // 3

 // Write a 64-bit field while reading previous value:
 // (This prints "3" while updating _sum to 10)
 Console.WriteLine (Interlocked.Exchange (ref _s um, 10)); // 10

 58

 // Update a field only if it matches a certain value (10):
 Console.WriteLine (Interlocked.CompareExchange (ref _sum,
 123, 10); // 123
 }
}

Interlocked’s mathematical operations are restricted to Increment, Decrement and Add. If you
want to multiply—or perform any other calculation—you can do so in lock-free style by using the
CompareExchange method (typically in conjunction with spin-waiting; this is an advanced concept).

Interlocked works by making its need for atomicity known to the operating system and virtual
machine.

Wait and Pulse
Earlier we discussed Event Wait Handles – a simple signaling mechanism where a thread blocks until
it receives notification from another.

A more powerful signaling construct is provided by the Monitor class, via two static methods – Wait
and Pulse. The principle is that you write the signaling logic yourself using custom flags and fields
(in conjunction with lock statements), then introduce Wait and Pulse commands to mitigate CPU
spinning. This advantage of this low-level approach is that with just Wait , Pulse and the lock
statement, you can achieve the functionality of AutoResetEvent, ManualResetEvent and Semaphore,
as well as WaitHandle' s static methods WaitAll and WaitAny . Furthermore, Wait and Pulse can be
amenable in situations where all of the Wait Handles are parsimoniously challenged.

A problem with Wait and Pulse is their poor documentation – particularly with regard their reason-
to-be. And to make matters worse, the Wait and Pulse methods have a peculiar aversion to dabblers:
if you call on them without a full understanding, they will know – and will delight in seeking you out
and tormenting you! Fortunately, there is a simple pattern one can follow that provides a fail-safe
solution in every case.

Wait and Pulse Defined
The purpose of Wait and Pulse is to provide a simple signaling mechanism: Wait blocks until it
receives notification from another thread; Pulse provides that notification.

Wait must execute before Pulse in order for the signal to work. If Pulse executes first, its pulse is
lost, and the late waiter must wait for a fresh pulse, or remain forever blocked. This differs from the

All of Interlocked’s methods generate a full fence. Therefore, fields that you access via
Interlocked don’t need additional fences—unless they’re accessed in other places in your
program without Interlocked or a lock.

Interlocked’s methods have a typical overhead of 50ns—half that of an uncontended lock.
Further, they can never suffer the additional cost of context switching due to blocking. The flip
side is that using Interlocked within a loop with many iterations can be less efficient that
obtaining a single lock around the loop (although Interlocked enables greater concurrency).

 59

behavior of an AutoResetEvent, where its Set method has a "latching" effect and so is effective if
called before WaitOne.

One must specify a synchronizing object when calling Wait or Pulse. If two threads use the same
object, then they are able to signal each other. The synchronizing object must be locked prior to
calling Wait or Pulse.

For example, if x has this declaration:

class Test {
 // Any reference-type object will work as a synchro nizing object
 object x = new object ();
}

then the following code blocks upon entering Monitor.Wait :

lock (x) Monitor .Wait (x);

The following code (if executed later on another thread) releases the blocked thread:

lock (x) Monitor .Pulse (x);

Lock toggling

To make this work, Monitor.Wait temporarily releases, or toggles the underlying lock while waiting,
so another thread (such as the one performing the Pulse) can obtain it. The Wait method can be
thought of as expanding into the following pseudo-code:

Monitor .Exit (x); // Release the lock

wait for a pulse on x
Monitor .Enter (x); // Regain the lock

Hence a Wait can block twice: once in waiting for a pulse, and again in regaining the exclusive lock.
This also means that Pulse by itself does not fully unblock a waiter: only when the pulsing thread
exits its lock statement can the waiter actually proceed.

Wait's lock toggling is effective regardless of the lock nesting level. If Wait is called inside two
nested lock statements:

lock (x)
 lock (x)
 Monitor .Wait (x);

then Wait logically expands into the following:

Monitor .Exit (x); Monitor .Exit (x); // Exit twice to release the lock

wait for a pulse on x
Monitor .Enter (x); Monitor .Enter (x); // Restore previous nesting level

Consistent with normal locking semantics, only the first call to Monitor.Enter affords a blocking
opportunity.

Why the lock?

Why have Wait and Pulse been designed such that they will only work within a lock? The primary
reason is so that Wait can be called conditionally – without compromising thread-safety. To take a
simple example, suppose we want to Wait only if a boolean field called available is false. The
following code is thread-safe:

 60

lock (x) {
 if (!available) Monitor .Wait (x);
 available = false ;
}

Several threads could run this concurrently, and none could preempt another in between checking the
available field and calling Monitor.Wait . The two statements are effectively atomic. A
corresponding notifier would be similarly thread-safe:

lock (x)
 if (!available) {
 available = true ;
 Monitor .Pulse (x);
 }

Specifying a timeout

A timeout can be specified when calling Wait , either in milliseconds or as a TimeSpan. Wait then
returns false if it gave up because of a timeout. The timeout applies only to the "waiting" phase
(waiting for a pulse): a timed out Wait will still subsequently block in order to re-acquire the lock, no
matter how long it takes. Here's an example:

lock (x) {
 if (! Monitor .Wait (x, TimeSpan .FromSeconds (10)))
 Console .WriteLine ("Couldn't wait!");
 Console .WriteLine ("But hey, I still have the lock on x!");
}

This rationale for this behavior is that in a well-designed Wait /Pulse application, the object on which
one calls Wait and Pulse is locked just briefly. So re-acquiring the lock should be a near-instant
operation.

Pulsing and acknowledgement

An important feature of Monitor.Pulse is that it executes asynchronously, meaning that it doesn't
itself block or pause in any way. If another thread is waiting on the pulsed object, it's notified,
otherwise the pulse has no effect and is silently ignored.

Pulse provides one-way communication: a pulsing thread signals a waiting thread. There is no
intrinsic acknowledgment mechanism: Pulse does not return a value indicating whether or not its
pulse was received. Furthermore, when a notifier pulses and releases its lock, there's no guarantee that
an eligible waiter will kick into life immediately. There can be an arbitrary delay, at the discretion of
the thread scheduler – during which time neither thread has the lock. This makes it difficult to know
when a waiter has actually resumed, unless the waiter specifically acknowledges, for instance via a
custom flag.

Relying on timely action from a waiter with no custom acknowledgement mechanism counts as
"messing" with Pulse and Wait . You'll lose!

If reliable acknowledgement is required, it must be explicitly coded, usually via a flag in
conjunction with another, reciprocal, Pulse and Wait .

 61

Waiting queues and PulseAll

More than one thread can simultaneously Wait upon the same object – in which case a "waiting
queue" forms behind the synchronizing object (this is distinct from the "ready queue" used for
granting access to a lock). Each Pulse then releases a single thread at the head of the waiting-queue,
so it can enter the ready-queue and re-acquire the lock. Think of it like an automatic car park: you
queue first at the pay station to validate your ticket (the waiting queue); you queue again at the barrier
gate to be let out (the ready queue).

Figure 2: Waiting Queue vs. Ready Queue

The order inherent in the queue structure, however, is often unimportant in Wait /Pulse applications,
and in these cases it can be easier to imagine a "pool" of waiting threads. Each pulse, then, releases
one waiting thread from the pool.

Monitor also provides a PulseAll method that releases the entire queue, or pool, of waiting threads in
a one-fell swoop. The pulsed threads won't all start executing exactly at the same time, however, but
rather in an orderly sequence, as each of their Wait statements tries to re-acquire the same lock. In
effect, PulseAll moves threads from the waiting-queue to the ready-queue, so they can resume in an
orderly fashion.

How to use Pulse and Wait
Here's how we start. Imagine there are two rules:

• the only synchronization construct available is the lock statement, aka Monitor.Enter and
Monitor.Exit

• there are no restrictions on spinning the CPU!

With those rules in mind, let's take a simple example: a worker thread that pauses until it receives
notification from the main thread:

 62

class SimpleWaitPulse {
 bool go;
 object locker = new object ();

 void Work() {
 Console .Write ("Waiting... ");
 lock (locker) { // Let's spin!
 while (!go) {
 // Release the lock so other threads can change the go flag
 Monitor .Exit (locker);
 // Regain the lock so we can re-test go in the whil e loop
 Monitor .Enter (locker);
 }
 }
 Console .WriteLine ("Notified!");
 }

 void Notify() // called from another thread
 {
 lock (locker) {
 Console .Write ("Notifying... ");
 go = true ;
 }
 }
}

Here's a main method to set things in motion:

static void Main() {
 SimpleWaitPulse test = new SimpleWaitPulse ();

 // Run the Work method on its own thread
 new Thread (test.Work).Start(); // "Waiting..."

 // Pause for a second, then notify the worker via o ur main thread:
 Thread .Sleep (1000);
 test.Notify(); // "Notifying... Notified!"
}

The Work method is where we spin – extravagantly consuming CPU time by looping constantly until
the go flag is true! In this loop we have to keep toggling the lock – releasing and re-acquiring it via
Monitor 's Exit and Enter methods – so that another thread running the Notify method can itself get
the lock and modify the go flag. The shared go field must always be accessed from within a lock to
avoid volatility issues (remember that all other synchronization constructs, such as the volatile
keyword, are out of bounds in this stage of the design!)

The next step is to run this and test that it actually works. Here's the output from the test Main
method:

Waiting... (pause) Notifying... Notified!

Now we can introduce Wait and Pulse. We do this by:

• replacing lock toggling (Monitor.Exit followed by Monitor.Enter) with Monitor.Wait

• inserting a call to Monitor.Pulse when a blocking condition is changed (i.e. the go flag is
modified).

 63

Here's the updated class, with the Console statements omitted for brevity:

class SimpleWaitPulse {
 bool go;
 object locker = new object ();

 void Work() {
 lock (locker)
 while (!go) Monitor.Wait (locker);
 }

 void Notify() {
 lock (locker) {
 go = true ;
 Monitor.Pulse (locker);
 }
 }
}

The class behaves as it did before, but with the spinning eliminated. The Wait command implicitly
performs the code we removed – Monitor.Exit followed by Monitor.Exit , but with one extra step in
the middle: while the lock is released, it waits for another thread to call Pulse. The Notifier method
does just this, after setting the go flag true. The job is done.

Pulse and Wait Generalized
Let's now expand the pattern. In the previous example, our blocking condition involved just one
boolean field – the go flag. We could, in another scenario, require an additional flag set by the
waiting thread to signal that's it's ready or complete. If we extrapolate by supposing there could be
any number of fields involved in any number of blocking conditions, the program can be generalized
into the following pseudo-code (in its spinning form):

class X {

 Blocking Fields: one or more objects involved in blocking condition(s), eg

 bool go; bool ready; int semaphoreCount; Queue <Task> consumerQ...

 object locker = new object (); // protects all the above fields!

 ... SomeMethod {

 ... whenever I want to BLOCK based on the blocking fields:
 lock (locker)

 while (! blocking fields to my liking) {
 // Give other threads a chance to change bl ocking fields!
 Monitor .Exit (locker);
 Monitor .Enter (locker);
 }

 ... whenever I want to ALTER one or more of the blocking fields:

 lock (locker) { alter blocking field(s) }
 }
}

We then apply Pulse and Wait as we did before:

• In the waiting loops, lock toggling is replaced with Monitor.Wait

• Whenever a blocking condition is changed, Pulse is called before releasing the lock.

 64

Here's the updated pseudo-code:

Wait/Pulse Boilerplate #1: Basic Wait/Pulse Usage
class X {

 < Blocking Fields ... >
 object locker = new object ();

 ... SomeMethod {

 ...

 ... whenever I want to BLOCK based on the blocking fields:
 lock (locker)

 while (! blocking fields to my liking)
 Monitor.Wait (locker);

 ... whenever I want to ALTER one or more of the blocking fields:
 lock (locker) {

 alter blocking field(s)
 Monitor.Pulse (locker);
 }
 }
}

This provides a robust pattern for using Wait and Pulse. Here are the key features to this pattern:

• Blocking conditions are implemented using custom fields (capable of functioning without
Wait and Pulse, albeit with spinning)

• Wait is always called within a while loop that checks its blocking condition (itself within
a lock statement)

• A single synchronization object (in the example above, locker) is used for all Waits and
Pulses, and to protect access to all objects involved in all blocking conditions

• Locks are held only briefly

Most importantly, with this pattern, pulsing does not force a waiter to continue. Rather, it notifies a
waiter that something has changed, advising it to re-check its blocking condition. The waiter then
determines whether or not it should proceed (via another iteration of its while loop) – and not the
pulser. The benefit of this approach is that it allows for sophisticated blocking conditions, without
sophisticated synchronization logic.

Another benefit of this pattern is immunity to the effects of a missed pulse. A missed pulse happens
when Pulse is called before Wait – perhaps due to a race between the notifier and waiter. But
because in this pattern a pulse means "re-check your blocking condition" (and not "continue"), an
early pulse can safely be ignored since the blocking condition is always checked before calling Wait,
thanks to the while statement.

With this design, one can define multiple blocking fields, and have them partake in multiple
blocking conditions, and yet still use a single synchronization object throughout (in our example,
locker). This is usually better than having separate synchronization objects on which to lock, Pulse
and Wait , in that one avoids the possibility of deadlock. Furthermore, with a single locking object,
all blocking fields are read and written to as a unit, avoiding subtle atomicity errors. It's a good idea,
however, not to use the synchronization object for purposes outside of the necessary scope (this can
be assisted by declaring private the synchronization object, as well as all blocking fields).

 65

Producer/Consumer Queue
A simple Wait /Pulse application is a producer-consumer queue – the structure we wrote earlier
using an AutoResetEvent. A producer enqueues tasks (typically on the main thread), while one or
more consumers running on worker threads pick off and execute the tasks one by one.

In this example, we'll use a string to represent a task. Our task queue then looks like this:

Queue<string > taskQ = new Queue<string >();

Because the queue will be used on multiple threads, we must wrap all statements that read or write to
the queue in a lock. Here's how we enqueue a task:

lock (locker) {
 taskQ.Enqueue ("my task");
 Monitor .PulseAll (locker); // We're altering a blocking condition
}

Because we're modifying a potential blocking condition, we must pulse. We call PulseAll rather than
Pulse because we're going to allow for multiple consumers. More than one thread may be waiting.

We want the workers to block while there's nothing to do, in other words, when there are no items on
the queue. Hence our blocking condition is taskQ.Count==0. Here's a Wait statement that performs
exactly this:

lock (locker)
 while (taskQ.Count == 0) Monitor .Wait (locker);

The next step is for the worker to dequeue the task and execute it:

lock (locker)
 while (taskQ.Count == 0) Monitor .Wait (locker);

string task;
lock (locker)
 task = taskQ.Dequeue();

This logic, however, is not thread-safe: we've basing a decision to dequeue upon stale information –
obtained in a prior lock statement. Consider what would happen if we started two consumer threads
concurrently, with a single item already on the queue. It's possible that neither thread would enter the
while loop to block – both seeing a single item on the queue. They'd both then attempt to dequeue the
same item, throwing an exception in the second instance! To fix this, we simply hold the lock a bit
longer – until we've finished interacting with the queue:

string task;
lock (locker) {
 while (taskQ.Count == 0) Monitor .Wait (locker);
 task = taskQ.Dequeue();
}

(We don't need to call Pulse after dequeuing, as no consumer can ever unblock by there being fewer
items on the queue).

Once the task is dequeued, there's no further requirement to keep the lock. Releasing it at this point
allows the consumer to perform a possibly time-consuming task without unnecessary blocking other
threads.

 66

Here's the complete program. As with the AutoResetEvent version, we enqueue a null task to signal a
consumer to exit (after finishing any outstanding tasks). Because we're supporting multiple
consumers, we must enqueue one null task per consumer to completely shut down the queue:

Wait/Pulse Boilerplate #2: Producer/Consumer Queue
using System;
using System.Threading;
using System.Collections.Generic;

public class TaskQueue : IDisposable {
 object locker = new object ();
 Thread [] workers;
 Queue<string > taskQ = new Queue<string >();

 public TaskQueue (int workerCount) {
 workers = new Thread [workerCount];

 // Create and start a separate thread for each work er
 for (int i = 0; i < workerCount; i++)
 (workers [i] = new Thread (Consume)).Start();
 }

 public void Dispose() {
 // Enqueue one null task per worker to make each ex it.
 foreach (Thread worker in workers) EnqueueTask (null);
 foreach (Thread worker in workers) worker.Join();
 }

 public void EnqueueTask (string task) {
 lock (locker) {
 taskQ.Enqueue (task);
 Monitor.PulseAll (locker);
 }
 }

 void Consume() {
 while (true) {
 string task;
 lock (locker) {
 while (taskQ.Count == 0) Monitor.Wait (locker);
 task = taskQ.Dequeue();
 }
 if (task == null) return ; // This signals our exit
 Console .Write (task);
 Thread .Sleep (1000); // Simulate time-consuming task
 }
 }
}

Here's a Main method that starts a task queue, specifying two concurrent consumer threads, and then
enqueues ten tasks to be shared amongst the two consumers:

 67

 static void Main() {
 using (TaskQueue q = new TaskQueue (2)) {
 for (int i = 0; i < 10; i++)
 q.EnqueueTask (" Task" + i);

 Console .WriteLine ("Enqueued 10 tasks");
 Console .WriteLine ("Waiting for tasks to complete...");
 }
 // Exiting the using statement runs TaskQueue's Dis pose method,
 // which shuts down the consumers, after all outsta nding tasks
 // have completed.
 Console .WriteLine ("\r\nAll tasks done!");
 }

Enqueued 10 tasks
Waiting for tasks to complete...

 Task1 Task0 (pause...) Task2 Task3 (pause...) Task4 Task5 (pause...)

 Task6 Task7 (pause...) Task8 Task9 (pause...)
All tasks done!

Consistent with our design pattern, if we remove PulseAll and replace Wait with lock toggling, we'll
get the same output.

Pulse Economy

Let's revisit the producer enqueuing a task:

lock (locker) {
 taskQ.Enqueue (task);
 Monitor .PulseAll (locker);
}

Strictly speaking, we could economize by pulsing only when there's a possibility of a freeing a
blocked worker:

lock (locker) {
 taskQ.Enqueue (task);
 if (taskQ.Count <= workers.Length) Monitor .PulseAll (locker);
}

We'd be saving very little, though, since pulsing typically takes under a microsecond, and incurs no
overhead on busy workers – since they ignore it anyway! It's a good policy with multi-threaded code
to cull any unnecessary logic: an intermittent bug due to a silly mistake is a heavy price to pay for a
one-microsecond saving! To demonstrate, this is all it would take to introduce an intermittent "stuck
worker" bug that would most likely evade initial testing (spot the difference):

lock (locker) {
 taskQ.Enqueue (task);
 if (taskQ.Count < workers.Length) Monitor .PulseAll (locker);
}

Pulsing unconditionally protects us from this type of bug.

If in doubt, Pulse. Rarely can you go wrong by pulsing, within this design pattern.

 68

Pulse or PulseAll?

This example comes with further pulse economy potential. After enqueuing a task, we could call
Pulse instead of PulseAll and nothing would break.

Let's recap the difference: with Pulse, a maximum of one thread can awake (and re-check its while-
loop blocking condition); with PulseAll, all waiting threads will awake (and re-check their blocking
conditions). If we're enqueing a single task, only one worker can handle it, so we need only wake up
one worker with a single Pulse. It's rather like having a class of sleeping children – if there's just one
ice-cream there's no point in waking them all to queue for it!

In our example we start only two consumer threads, so we would have little to gain. But if we started
ten consumers, we might benefit slightly in choosing Pulse over PulseAll. It would mean, though,
that if we enqueued multiple tasks, we would need to Pulse multiple times. This can be done within a
single lock statement, as follows:

lock (locker) {
 taskQ.Enqueue ("task 1");
 taskQ.Enqueue ("task 2");
 Monitor .Pulse (locker); // "Signal up to two
 Monitor .Pulse (locker); // waiting threads."
}

The price of one Pulse too few is a stuck worker. This will usually manifest as an intermittent bug,
because it will crop up only when a consumer is in a Waiting state. Hence one could extend the
previous maxim "if in doubt, Pulse", to "if in doubt, PulseAll!"

A possible exception to the rule might arise if evaluating the blocking condition was unusually time-
consuming.

Using Wait Timeouts
Sometimes it may be unreasonable or impossible to Pulse whenever an unblocking condition arises.
An example might be if a blocking condition involves calling a method that derives information from
periodically querying a database. If latency is not an issue, the solution is simple: one can specify a
timeout when calling Wait , as follows:

lock (locker) {

 while (blocking condition)

 Monitor .Wait (locker, timeout);

This forces the blocking condition to be re-checked, at a minimum, at a regular interval specified by
the timeout, as well as immediately upon receiving a pulse. The simpler the blocking condition, the
smaller the timeout can be without causing inefficiency.

The same system works equally well if the pulse is absent due to a bug in the program! It can be
worth adding a timeout to all Wait commands in programs where synchronization is particularly
complex – as an ultimate backup for obscure pulsing errors. It also provides a degree of bug-
immunity if the program is modified later by someone not on the Pulse!

Races and Acknowledgement
Let's say we want a signal a worker five times in a row:

 69

class Race {
 static object locker = new object ();
 static bool go;

 static void Main() {
 new Thread (SaySomething).Start();

 for (int i = 0; i < 5; i++) {
 lock (locker) { go = true ; Monitor .Pulse (locker); }
 }
 }

 static void SaySomething() {
 for (int i = 0; i < 5; i++) {
 lock (locker) {
 while (!go) Monitor .Wait (locker);
 go = false ;
 }
 Console .WriteLine ("Wassup?");
 }
 }
}

Expected Output:

Wassup?
Wassup?
Wassup?
Wassup?
Wassup?

Actual Output:

Wassup?

 (hangs)

This program is flawed: the for loop in the main thread can free-wheel right through its five iterations
any time the worker doesn't hold the lock. Possibly before the worker even starts! The
Producer/Consumer example didn't suffer from this problem because if the main thread got ahead of
the worker, each request would simply queue up. But in this case, we need the main thread to block at
each iteration if the worker's still busy with a previous task.

A simple solution is for the main thread to wait after each cycle until the go flag is cleared by the
worker. This, then, requires that the worker call Pulse after clearing the go flag:

 70

class Acknowledged {
 static object locker = new object ();
 static bool go;

 static void Main() {
 new Thread (SaySomething).Start();

 for (int i = 0; i < 5; i++) {
 lock (locker) { go = true ; Monitor.Pulse (locker); }
 lock (locker) { while (go) Monitor.Wait (locker); }
 }
 }

 static void SaySomething() {
 for (int i = 0; i < 5; i++) {
 lock (locker) {
 while (!go) Monitor.Wait (locker);
 go = false ; Monitor.Pulse (locker); // Worker must Pulse
 }
 Console .WriteLine ("Wassup?");
 }
 }
}

Wassup? (repeated five times)

An important feature of such a program is that the worker releases its lock before performing its
potentially time-consuming job (this would happen in place of where we're calling
Console.WriteLine). This ensures the instigator is not unduly blocked while the worker performs the
task for which it has been signaled (and is blocked only if the worker is busy with a previous task).

In this example, only one thread (the main thread) signals the worker to perform a task. If multiple
threads were to signal the worker – using our Main method's logic – we would come unstuck. Two
signaling threads could each execute the following line of code in sequence:

 lock (locker) { go = true ; Monitor .Pulse (locker); }

resulting in the second signal being lost if the worker didn't happen to have finish processing the first.
We can make our design robust in this scenario by using a pair of flags – a "ready" flag as well as a
"go" flag. The "ready" flag indicates that the worker is able to accept a fresh task; the "go" flag is an
instruction to proceed, as before. This is analogous to a previous example that performed the same
thing using two AutoResetEvents, except more extensible. Here's the pattern, refactored with
instance fields:

 71

Wait/Pulse Boilerplate #3: Two-way Signaling
public class Acknowledged {
 object locker = new object ();
 bool ready;
 bool go;

 public void NotifyWhenReady() {
 lock (locker) {
 // Wait if the worker's already busy with a previou s job
 while (!ready) Monitor .Wait (locker);
 ready = false ;
 go = true ;
 Monitor .PulseAll (locker);
 }
 }

 public void AcknowledgedWait() {
 // Indicate that we're ready to process a request
 lock (locker) { ready = true ; Monitor .Pulse (locker); }

 lock (locker) {
 while (!go) Monitor .Wait (locker); // Wait for a "go" signal
 go = false ; Monitor .PulseAll (locker); // Acknowledge signal
 }

 Console .WriteLine ("Wassup?"); // Perform task
 }
}

To demonstrate, we'll start two concurrent threads, each that will notify the worker five times.
Meanwhile, the main thread will wait for ten notifications:

public class Test {
 static Acknowledged a = new Acknowledged ();

 static void Main() {
 new Thread (Notify5).Start(); // Run two concurrent
 new Thread (Notify5).Start(); // notifiers...
 Wait10(); // ... and one waiter.
 }

 static void Notify5() {
 for (int i = 0; i < 5; i++)
 a.NotifyWhenReady();
 }

 static void Wait10() {
 for (int i = 0; i < 10; i++)
 a.AcknowledgedWait();
 }
}

Wassup?
Wassup?
Wassup?

 (repeated ten times)

 72

In the Notify method, the ready flag is cleared before exiting the lock statement. This is vitally
important: it prevents two notifiers signaling sequentially without re-checking the flag. For the sake
of simplicity, we also set the go flag and call PulseAll in the same lock statement – although we
could just as well put this pair of statements in a separate lock and nothing would break.

Simulating Wait Handles
You might have noticed a pattern in the previous example: both waiting loops have the following
structure:

lock (locker) {

 while (! flag) Monitor .Wait (locker);

 flag = false ;
 ...
}

where flag is set to true in another thread. This is, in effect, mimicking an AutoResetEvent. If we
omitted flag=false, we'd then have a ManualResetEvent. Using an integer field, Pulse and Wait can
also be used to mimic a Semaphore. In fact the only Wait Handle we can't mimic with Pulse and
Wait is a Mutex, since this functionality is provided by the lock statement.

Simulating the static methods that work across multiple Wait Handles is in most cases easy. The
equivalent of calling WaitAll across multiple EventWaitHandles is nothing more than a blocking
condition that incorporates all the flags used in place of the Wait Handles:

lock (locker) {
 while (!flag1 && !flag2 && !flag3...) Monitor .Wait (locker);

This can be particularly useful given that WaitAll is in most cases unusable due to COM legacy
issues. Simulating WaitAny is simply a matter of replacing the && operator with the || operator.

SignalAndWait is trickier. Recall that this method signals one handle while waiting on another in an
atomic operation. We have a situation analogous to a distributed database transaction – we need a
two-phase commit! Assuming we wanted to signal flagA while waiting on flagB, we'd have to divide
each flag into two, resulting in code that might look something like this:

lock (locker) {
 flagAphase1 = true ;
 Monitor .Pulse (locker);
 while (!flagBphase1) Monitor .Wait (locker);

 flagAphase2 = true ;
 Monitor .Pulse (locker);
 while (!flagBphase2) Monitor .Wait (locker);
}

perhaps with additional "rollback" logic to retract flagAphase1 if the first Wait statement threw an
exception as a result of being interrupted or aborted. This is one situation where Wait Handles are
way easier! True atomic signal-and-waiting, however, is actually an unusual requirement.

 73

Wait Rendezvous

Just as WaitHandle.SignalAndWait can be used to rendezvous a pair of threads, so can Wait and
Pulse. In the following example, one could say we simulate two ManualResetEvents (in other
words, we define two boolean flags!) and then perform reciprocal signal-and-waiting by setting one
flag while waiting for the other. In this case we don't need true atomicity in signal-and-waiting, so can
avoid the need for a "two-phase commit". As long as we set our flag true and Wait in the same lock
statement, the rendezvous will work:

class Rendezvous {
 static object locker = new object ();
 static bool signal1, signal2;

 static void Main() {
 // Get each thread to sleep a random amount of time .
 Random r = new Random();
 new Thread (Mate).Start (r.Next (10000));
 Thread .Sleep (r.Next (10000));

 lock (locker) {
 signal1 = true ;
 Monitor.Pulse (locker);
 while (!signal2) Monitor.Wait (locker);
 }
 Console .Write ("Mate! ");
 }

 // This is called via a ParameterizedThreadStart
 static void Mate (object delay) {
 Thread .Sleep ((int) delay);
 lock (locker) {
 signal2 = true ;
 Monitor.Pulse (locker);
 while (!signal1) Monitor.Wait (locker);
 }
 Console .Write ("Mate! ");
 }
}

Mate! Mate! (almost in unison)

Wait and Pulse vs. Wait Handles
Because Wait and Pulse are the most flexible of the synchronization constructs, they can be used in
almost any situation. Wait Handles, however, have two advantages:

• they have the capability of working across multiple processes

• they are simpler to understand, and harder to break

Additionally, Wait Handles are more interoperable in the sense that they can be passed around via
method arguments. In thread pooling, this technique is usefully employed.

In terms of performance, Wait and Pulse have a slight edge, if one follows the suggested design
pattern for waiting, that is:

lock (locker)

 while (blocking condition) Monitor .Wait (locker);

 74

and the blocking condition happens to false from the outset. The only overhead then incurred is that
of taking out the lock (tens of nanoseconds) versus the few microseconds it would take to call
WaitHandle.WaitOne. Of course, this assumes the lock is uncontended; even the briefest lock
contention would be more than enough to even things out; frequent lock contention would make a
Wait Handle faster!

A sensible guideline is to use a Wait Handle where a particular construct lends itself naturally to the
job, otherwise use Wait and Pulse.

Suspend and Resume
A thread can be explicitly suspended and resumed via the methods Thread.Suspend and
Thread.Resume. This mechanism is completely separate to that of blocking discussed previously.
Both systems are independent and operate in parallel.

A thread can suspend itself or another thread. Calling Suspend results in the thread briefly entering
the SuspendRequested state, then upon reaching a point safe for garbage collection, it enters the
Suspended state. From there, it can be resumed only via another thread that calls its Resume method.
Resume will work only on a suspended thread, not a blocked thread.

From .NET 2.0, Suspend and Resume have been deprecated, their use discouraged because of the
danger inherent in arbitrarily suspending another thread. If a thread holding a lock on a critical
resource is suspended, the whole application (or computer) can deadlock. This is far more dangerous
than calling Abort – which would result in any such locks being released – at least theoretically – by
virtue of code in finally blocks.

It is, however, safe to call Suspend on the current thread – and in doing so one can implement a
simple synchronization mechanism – with a worker thread in a loop – performing a task, calling
Suspend on itself, then waiting to be resumed (“woken up”) by the main thread when another task is
ready. The difficulty, though, is in testing whether or not the worker is suspended. Consider the
following code:

worker.NextTask = "MowTheLawn" ;
if ((worker.ThreadState & ThreadState .Suspended) > 0)
 worker.Resume;
else
 // We cannot call Resume as the thread's already ru nning.
 // Signal the worker with a flag instead:
 worker.AnotherTaskAwaits = true ;

This is horribly thread-unsafe – the code could be preempted at any point in these five lines – during
which the worker could march on in and change its state. While it can be worked around, the solution
is more complex than the alternative – using a synchronization construct such as an AutoResetEvent
or Monitor.Wait. This makes Suspend and Resume useless on all counts.

Given the potential for variation through different CPUs, operating systems, CLR versions, and
program logic; and that in any case a few microseconds is unlikely to be of any consequence
before a Wait statement, performance may be a dubious reason to choose Wait and Pulse over
Wait Handles, or vice versa.

The deprecated Suspend and Resume methods have two modes – dangerous and useless!

 75

Aborting Threads
A thread can be ended forcibly via the Abort method:

class Abort {
 static void Main() {
 Thread t = new Thread (delegate () { while (true);}); // Spin forever
 t.Start();
 Thread .Sleep (1000); // Let it run for a second...
 t. Abort(); // then abort it.
 }
}

The thread upon being aborted immediately enters the AbortRequested state. If it then terminates as
expected, it goes into the Stopped state. The caller can wait for this to happen by calling Join:

class Abort {
 static void Main() {
 Thread t = new Thread (delegate () { while (true); });
 Console .WriteLine (t.ThreadState); // Unstarted

 t. Start();
 Thread .Sleep (1000);
 Console .WriteLine (t.ThreadState); // Running

 t. Abort();
 Console .WriteLine (t.ThreadState); // AbortRequested

 t. Join();
 Console .WriteLine (t.ThreadState); // Stopped
 }
}

Abort causes a ThreadAbortException to be thrown on the target thread, in most cases right where
the thread's executing at the time. The thread being aborted can choose to handle the exception, but
the exception then gets automatically re-thrown at the end of the catch block (to help ensure the
thread, indeed, ends as expected). It is, however, possible to prevent the automatic re-throw by calling
Thread.ResetAbort within the catch block. Then thread then re-enters the Running state (from
which it can potentially be aborted again). In the following example, the worker thread comes back
from the dead each time an Abort is attempted:

class Terminator {
 static void Main() {
 Thread t = new Thread (Work);
 t.Start();
 Thread .Sleep (1000); t.Abort();
 Thread .Sleep (1000); t.Abort();
 Thread .Sleep (1000); t.Abort();
 }

 static void Work() {
 while (true) {
 try { while (true); }
 catch (ThreadAbortException) { Thread . ResetAbort(); }
 Console .WriteLine ("I will not die!");
 }
 }
}

 76

ThreadAbortException is treated specially by the runtime, in that it doesn't cause the whole
application to terminate if unhandled, unlike all other types of exception.

Abort will work on a thread in almost any state – running, blocked, suspended, or stopped. However
if a suspended thread is aborted, a ThreadStateException is thrown – this time on the calling thread
– and the abortion doesn't kick off until the thread is subsequently resumed. Here's how to abort a
suspended thread:

try { suspendedThread.Abort(); }
catch (ThreadStateException) { suspendedThread.Resume(); }
// Now the suspendedThread will abort.

Complications with Thread.Abort
Assuming an aborted thread doesn't call ResetAbort, one might expect it to terminate fairly quickly.
But as it happens, with a good lawyer the thread may remain on death row for quite some time! Here
are a few factors that may keep it lingering in the AbortRequested state:

• Static class constructors are never aborted part-way through (so as not to potentially
poison the class for the remaining life of the application domain)

• All catch/finally blocks are honored, and never aborted mid-stream

• If the thread is executing unmanaged code when aborted, execution continues until the
next managed code statement is reached

The last factor can be particularly troublesome, in that the .NET framework itself often calls
unmanaged code, sometimes remaining there for long periods of time. An example might be when
using a networking or database class. If the network resource or database server dies or is slow to
respond, it's possible that execution could remain entirely within unmanaged code, for perhaps
minutes, depending on the implementation of the class. In these cases, one certainly wouldn't want to
Join the aborted thread – at least not without a timeout!

Aborting pure .NET code is less problematic, as long as try/finally blocks or using statements are
incorporated to ensure proper cleanup takes place should a ThreadAbortException be thrown.
However, even then, one can still be vulnerable to nasty surprises. For example, consider the
following:

using (StreamWriter w = File .CreateText ("myfile.txt"))
 w.Write ("Abort-Safe?");

C#'s using statement is simply a syntactic shortcut, which in this case expands to the following:

StreamWriter w;
w = File .CreateText ("myfile.txt");
try { w.Write ("Abort-Safe"); }
finally { w.Dispose(); }

It's possible for an Abort to fire after the StreamWriter is created, but before the try block begins.
In fact, by digging into the IL, one can see that it's also possible for it to fire in between the
StreamWriter being created and assigned to w:

IL_0001: ldstr "myfile.txt"
IL_0006: call class [mscorlib]System.IO.Stre amWriter
 [mscorlib]System.IO.File::Crea teText(string)
IL_000b: stloc.0
.try
{

 77

 ...

Either way, the Dispose method in the finally block is circumvented, resulting in an abandoned open
file handle – preventing any subsequent attempts to create myfile.txt until the application domain
ends.

In reality, the situation in this example is worse still, because an Abort would most likely take place
within the implementation of File.CreateText. This is referred to as opaque code – that which we
don't have the source. Fortunately, .NET code is never truly opaque: we can again wheel in ILDASM,
or better still, Lutz Roeder's Reflector – and looking into the framework's assemblies, see that it calls
StreamWriter' s constructor, which has the following logic:

public StreamWriter (string path, bool append, ...)
{
 ...
 ...
 Stream stream1 = StreamWriter.CreateFile (path, a ppend);
 this .Init (stream1, ...);
}

Nowhere in this constructor is there a try/catch block, meaning that if the Abort fires anywhere
within the (non-trivial) Init method, the newly created stream will be abandoned, with no way of
closing the underlying file handle.

Because disassembling every required CLR call is obviously impractical, this raises the question on
how one should go about writing an abort-friendly method. The most common workaround is not to
abort another thread at all – but rather add a custom boolean field to the worker's class, signaling that
it should abort. The worker checks the flag periodically, exiting gracefully if true. Ironically, the most
graceful exit for the worker is by calling Abort on its own thread – although explicitly throwing an
exception also works well. This ensures the thread's backed right out, while executing any
catch/finally blocks – rather like calling Abort from another thread, except the exception is thrown
only from designated places:

class ProLife {
 public static void Main() {
 RulyWorker w = new RulyWorker ();
 Thread t = new Thread (w.Work);
 t.Start();
 Thread .Sleep (500);
 w.Abort();
 }

 78

 public class RulyWorker {
 // The volatile keyword ensures abort is not cached by a thread
 volatile bool abort;

 public void Abort() { abort = true ; }

 public void Work() {
 while (true) {
 CheckAbort();
 // Do stuff...
 try { OtherMethod(); }
 finally { /* any required cleanup */ }
 }
 }

 void OtherMethod() {
 // Do stuff...
 CheckAbort();
 }

 void CheckAbort() { if (abort) Thread.CurrentThread.Abort(); }
 }
}

Ending Application Domains
Another way to implement an abort-friendly worker is by having its thread run in its own application
domain. After calling Abort , one simply tears down the application domain, thereby releasing any
resources that were improperly disposed.

Strictly speaking, the first step – aborting the thread – is unnecessary, because when an application
domain is unloaded, all threads executing code in that domain are automatically aborted. However,
the disadvantage of relying on this behavior is that if the aborted threads don't exit in a timely fashion
(perhaps due to code in finally blocks, or for other reasons discussed previously) the application
domain will not unload, and a CannotUnloadAppDomainException will be thrown on the caller.
For this reason, it's better to explicitly abort the worker thread, then call Join with some timeout (over
which you have control) before unloading the application domain.

In the following example, the worker enters an infinite loop, creating and closing a file using the
abort-unsafe File.CreateText method. The main thread then repeatedly starts and aborts workers. It
usually fails within one or two iterations, with CreateText getting aborted part way through its
internal implementation, leaving behind an abandoned open file handle:

Calling Abort on one's own thread is one circumstance in which Abort is totally safe. Another
is when you can be certain the thread you're aborting is in a particular section of code, usually
by virtue of a synchronization mechanism such as a Wait Handle or Monitor.Wait. A third
instance in which calling Abort is safe is when you subsequently tear down the thread's
application domain or process.

 79

using System;
using System.IO;
using System.Threading;

class Program {
 static void Main() {
 while (true) {
 Thread t = new Thread (Work);
 t.Start();
 Thread .Sleep (100);
 t.Abort();
 Console .WriteLine ("Aborted");
 }
 }

 static void Work() {
 while (true)
 using (StreamWriter w = File .CreateText ("myfile.txt")) { }
 }
}

Aborted
Aborted
IOException: The process cannot access the file 'my file.txt' because it
is being used by another process.

Here's the same program modified so the worker thread runs in its own application domain, which is
unloaded after the thread is aborted. It runs perpetually without error, because unloading the
application domain releases the abandoned file handle:

class Program {
 static void Main (string [] args) {
 while (true) {
 AppDomain ad = AppDomain.CreateDomain ("worker");
 Thread t = new Thread (delegate () { ad.DoCallBack (Work); });
 t.Start();
 Thread .Sleep (100);
 t.Abort();
 if (!t.Join (2000)) {
 // Thread won't end - here's where we could take fu rther action,
 // if, indeed, there was anything we could do. Fort unately in
 // this case, we can expect the thread *always* to end.
 }
 AppDomain.Unload (ad); // Tear down the polluted domain!
 Console .WriteLine ("Aborted");
 }
 }

 static void Work() {
 while (true)
 using (StreamWriter w = File .CreateText ("myfile.txt")) { }
 }
}

Aborted
Aborted
Aborted
Aborted

...

...

 80

Creating and destroying an application domain is classed as relatively time-consuming in the world of
threading activities (taking a few milliseconds) so it's something conducive to being done irregularly
rather than in a loop! Also, the separation introduced by the application domain introduces another
element that can be either of benefit or detriment, depending on what the multi-threaded program is
setting out to achieve. In a unit-testing context, for instance, running threads on separate application
domains can be of great benefit.

Ending Processes
Another way in which a thread can end is when the parent process terminates. One example of this is
when a worker thread's IsBackground property is set to true, and the main thread finishes while the
worker is still running. The background thread is unable to keep the application alive, and so the
process terminates, taking the background thread with it.

When a thread terminates because of its parent process, it stops dead, and no finally blocks are
executed.

The same situation arises when a user terminates an unresponsive application via the Windows Task
Manager, or a process is killed programmatically via Process.Kill.

© 2006-2009 Joseph Albahari & O'Reilly Media, Inc. All rights reserved

Think in LINQ

Use LINQPad to interactively query your
databases, and within a week, you'll be

thinking in LINQ!

Written by the author of this article,
and packed with more than 200

samples.

Free!

www.linqpad.net

