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Overview and Concepts 
C# supports parallel execution of code through multithreading. A thread is an independent 
execution path, able to run simultaneously with other threads. 

A C# program starts in a single thread created automatically by the CLR and operating system 
(the "main" thread), and is made multi-threaded by creating additional threads. Here's a simple 
example and its output: 

All examples assume the following namespaces are imported, unless otherwise specified: 
 
using System; 
using System.Threading; 

class  ThreadTest { 
  static  void  Main() { 
    Thread  t = new Thread  (WriteY); 
    t.Start();                          // Run WriteY on new thread  
    while  ( true ) Console .Write ( "x" );   // Write 'x' forever  
  } 
  
  static  void  WriteY() { 
    while  ( true ) Console .Write ( "y" );   // Write 'y' forever  
  } 
} 

xxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy yy 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyy yy 
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxx xx 
xxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyy yy 
yyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx 
... 

The main thread creates a new thread t on which it runs a method that repeatedly prints the character 
y. Simultaneously, the main thread repeatedly prints the character x. 

The CLR assigns each thread its own memory stack so that local variables are kept separate. In the 
next example, we define a method with a local variable, then call the method simultaneously on the 
main thread and a newly created thread: 

static  void  Main() { 
  new Thread  (Go).Start();      // Call Go() on a new thread  
  Go();                         // Call Go() on the main thread  
}  
 
static  void  Go() { 
  // Declare and use a local variable - 'cycles'  
  for  ( int  cycles = 0; cycles < 5; cycles++) Console .Write ( '?' ); 
} 

?????????? 

A separate copy of the cycles variable is created on each thread's memory stack, and so the output is, 
predictably, ten question marks. 

Threads share data if they have a common reference to the same object instance. Here's an example: 
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class  ThreadTest { 
 bool  done; 
  
 static  void  Main() { 
   ThreadTest tt = new ThreadTest();   // Create a common instance  
   new Thread  (tt.Go).Start(); 
   tt.Go(); 
 } 
  
 // Note that Go is now an instance method  
 void  Go() { 
   if  (!done) { done = true ; Console .WriteLine ( "Done" ); } 
 } 
} 

Because both threads call Go() on the same ThreadTest instance, they share the done field. This 
results in "Done" being printed once instead of twice: 

Done 

Static fields offer another way to share data between threads. Here's the same example with done as a 
static field: 

class  ThreadTest { 
 static  bool  done;    // Static fields are shared between all threads  
  
 static  void  Main() { 
   new Thread  (Go).Start(); 
   Go(); 
 } 
  
 static  void  Go() { 
   if  (!done) { done = true ; Console .WriteLine ( "Done" ); } 
 } 
} 

Both of these examples illustrate another key concept – that of thread safety (or, rather, lack of it!) 
The output is actually indeterminate: it's possible (although unlikely) that "Done" could be printed 
twice. If, however, we swap the order of statements in the Go method, then the odds of "Done" being 
printed twice go up dramatically: 

static  void  Go() { 
  if  (!done) { Console .WriteLine ( "Done" ); done = true ; } 
} 

Done 

Done   (usually!) 

The problem is that one thread can be evaluating the if  statement right as the other thread is executing 
the WriteLine  statement – before it's had a chance to set done to true. 

The remedy is to obtain an exclusive lock while reading and writing to the common field. C# 
provides the lock statement for just this purpose: 
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class  ThreadSafe { 
  static  bool  done; 
  static  object  locker = new object (); 
  
  static  void  Main() { 
    new Thread  (Go).Start(); 
    Go(); 
  } 
  
  static  void  Go() { 
    lock  (locker) { 
      if  (!done) { Console .WriteLine ( "Done" ); done = true ; } 
    } 
  } 
} 

When two threads simultaneously contend a lock (in this case, locker), one thread waits, or blocks, 
until the lock becomes available. In this case, it ensures only one thread can enter the critical section 
of code at a time, and "Done" will be printed just once. Code that's protected in such a manner – from 
indeterminacy in a multithreading context – is called thread-safe. 

Temporarily pausing, or blocking, is an essential feature in coordinating, or synchronizing the 
activities of threads. Waiting for an exclusive lock is one reason for which a thread can block. 
Another is if a thread wants to pause, or Sleep for a period of time: 

Thread .Sleep ( TimeSpan .FromSeconds (30));    // Block for 30 seconds  

A thread can also wait for another thread to end, by calling its Join method: 

Thread  t = new Thread  (Go);     // Assume Go is some static method  
t .Start(); 
t .Join();                       // Wait (block) until thread t ends  

A thread, while blocked, doesn't consume CPU resources. 

How Threading Works 
Multithreading is managed internally by a thread scheduler, a function the CLR typically delegates to 
the operating system. A thread scheduler ensures all active threads are allocated appropriate execution 
time, and that threads that are waiting or blocked – for instance – on an exclusive lock, or on user 
input – do not consume CPU time. 

On a single-core computer, a thread scheduler performs time-slicing – rapidly switching execution 
between each of the active threads. This results in "choppy" behavior, such as in the very first 
example, where each block of a repeating X or Y character corresponds to a time-slice allocated to 
the thread. Under Windows, a time-slice is typically in the tens-of-milliseconds region – chosen such 
as to be much larger than the CPU overhead in actually switching context between one thread and 
another (which is typically in the few-microseconds region). 
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On a multicore or multi-processor computer, multithreading is 
implemented with a mixture of time-slicing and genuine 
concurrency – where different threads run code simultaneously on 
different CPUs. It's almost certain there will still be some time-
slicing, because of the operating system's need to service its own 
threads – as well as those of other applications. 

A thread is said to be preempted when its execution is 
interrupted due to an external factor such as time-slicing. In 
most situations, a thread has no control over when and where 
it's preempted. 

Threads vs. Processes 
All threads within a single application are logically contained 
within a process – the operating system unit in which an 
application runs. 

Threads have certain similarities to processes – for instance, 
processes are typically time-sliced with other processes running on 
the computer in much the same way as threads within a single C# 
application. The key difference is that processes are fully isolated 
from each other; threads share (heap) memory with other threads 
running in the same application. This is what makes threads useful: 
one thread can be fetching data in the background, while another 
thread is displaying the data as it arrives.  

Free 
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When to Use Threads 
A common application for multithreading is performing time-consuming tasks in the background. 
The main thread keeps running, while the worker thread does its background job. With Windows 
Forms or WPF applications, if the main thread is tied up performing a lengthy operation, keyboard 
and mouse messages cannot be processed, and the application becomes unresponsive. For this reason, 
it’s worth running time-consuming tasks on worker threads even if the main thread has the user stuck 
on a “Processing… please wait” modal dialog in cases where the program can’t proceed until a 
particular task is complete. This ensures the application doesn’t get tagged as “Not Responding” by 
the operating system, enticing the user to forcibly end the process in frustration! The modal dialog 
approach also allows for implementing a "Cancel" button, since the modal form will continue to 
receive events while the actual task is performed on the worker thread. The BackgroundWorker class 
assists in just this pattern of use. 

In the case of non-UI applications, such as a Windows Service, multithreading makes particular sense 
when a task is potentially time-consuming because it’s awaiting a response from another computer 
(such as an application server, database server, or client). Having a worker thread perform the task 
means the instigating thread is immediately free to do other things. 
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Another use for multithreading is in methods that perform intensive calculations. Such methods can 
execute faster on a multi-processor computer if the workload is divided amongst multiple threads. 
(One can test for the number of processors via the Environment.ProcessorCount property). 

A C# application can become multi-threaded in two ways: either by explicitly creating and running 
additional threads, or using a feature of the .NET framework that implicitly creates threads – such as 
BackgroundWorker, thread pooling, a threading timer, a Remoting server, or a Web Services or 
ASP.NET application. In these latter cases, one has no choice but to embrace multithreading. A 
single-threaded ASP.NET web server would not be cool – even if such a thing were possible! 
Fortunately, with stateless application servers, multithreading is usually fairly simple; one's only 
concern perhaps being in providing appropriate locking mechanisms around data cached in static 
variables. 

When Not to Use Threads 
Multithreading also comes with disadvantages. The biggest is that it can lead to vastly more complex 
programs. Having multiple threads does not in itself create complexity; it's the interaction between 
the threads that creates complexity. This applies whether or not the interaction is intentional, and can 
result long development cycles, as well as an ongoing susceptibility to intermittent and non-
reproducable bugs. For this reason, it pays to keep such interaction in a multi-threaded design simple 
– or not use multithreading at all – unless you have a peculiar penchant for re-writing and debugging! 

Multithreading also comes with a resource and CPU cost in allocating and switching threads if used 
excessively. In particular, when heavy disk I/O is involved, it can be faster to have just one or two 
workers thread performing tasks in sequence, rather than having a multitude of threads each 
executing a task at the same time. Later we describe how to implement a Producer/Consumer queue, 
which provides just this functionality. 

Creating and Starting Threads 
Threads are created using the Thread class’s constructor, passing in a ThreadStart delegate – 
indicating the method where execution should begin.  Here’s how the ThreadStart delegate is 
defined: 

public delegate void  ThreadStart (); 

Calling Start on the thread then sets it running. The thread continues until its method returns, at 
which point the thread ends. Here’s an example, using the expanded C# syntax for creating a 
TheadStart delegate: 

class  ThreadTest { 
  static  void  Main() { 
    Thread  t = new Thread  ( new ThreadStart  (Go)); 
    t.Start();   // Run Go() on the new thread.  
    Go();        // Simultaneously run Go() in the main thread.  
  } 
 
  static  void  Go() { Console .WriteLine ( "hello!" ); } 

In this example, thread t executes Go() – at (much) the same time the main thread calls Go(). The 
result is two near-instant hellos: 

hello! 
hello! 
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A thread can be created more conveniently using C#'s shortcut syntax for instantiating delegates: 

static  void  Main() { 
  // No need to explicitly use ThreadStart:  
  Thread  t = new Thread  (Go);  
  t.Start(); 
  ... 
} 
 
static  void  Go() { ... } 

In this case, a ThreadStart delegate is inferred automatically by the compiler. Another shortcut is to 
use an anonymous method to start the thread: 

static  void  Main() { 
  Thread  t = new Thread  ( delegate () { Console .Write ( "Hello!" ); }); 
  t.Start(); 
} 

A thread has an IsAlive property that returns true after its Start() method has been called, up until the 
thread ends. A thread, once ended, cannot be re-started. 

Passing Data to ThreadStart 
Let’s say, in the example above, we wanted to better distinguish the output from each thread, perhaps 
by having one of the threads write in upper case. We could achieve this by passing a flag to the Go 
method: but then we couldn’t use the ThreadStart delegate because it doesn’t accept arguments. 
Fortunately, the .NET framework defines another version of the delegate called 
ParameterizedThreadStart, which accepts a single object argument as follows: 

public delegate void ParameterizedThreadStart  ( object  obj); 

The previous example then looks like this: 

class  ThreadTest { 
  static  void  Main() { 
    Thread  t = new Thread  (Go); 
    t.Start ( true);             // == Go (true)  
    Go ( false ); 
  } 
 
  static  void  Go ( object upperCase) { 
    bool  upper = ( bool ) upperCase; 
    Console .WriteLine (upper ? "HELLO!" : "hello!" ); 
  } 

hello! 
HELLO! 

In this example, the compiler automatically infers a ParameterizedThreadStart delegate because 
the Go method accepts a single object argument. We could just as well have written: 

Thread  t = new Thread  ( new ParameterizedThreadStart  (Go)); 
t.Start ( true ); 

A feature of using ParameterizedThreadStart is that we must cast the object argument to the 
desired type (in this case bool) before use. Also, there is only a single-argument version of this 
delegate. 

An alternative is to use an anonymous method to call an ordinary method as follows: 
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static  void  Main() { 
  Thread  t = new Thread  ( delegate () { WriteText ( "Hello" ); }); 
  t.Start(); 
} 
 
static  void  WriteText ( string  text) { Console .WriteLine (text); } 

The advantage is that the target method (in this case WriteText ) can accept any number of 
arguments, and no casting is required. However one must take into account the outer-variable 
semantics of anonymous methods, as is apparent in the following example: 

static  void  Main() { 
  string  text = "Before" ; 
  Thread  t = new Thread  ( delegate () { WriteText (text); }); 
  text = "After" ; 
  t.Start(); 
} 
 
static  void  WriteText ( string  text) { Console .WriteLine (text); } 

After 

  

Another common system for passing data to a thread is by giving Thread an instance method rather 
than a static method. The instance object’s properties can then tell the thread what to do, as in the 
following rewrite of the original example: 

class  ThreadTest { 
  bool  upper; 
  
  static  void  Main() { 
    ThreadTest instance1 = new ThreadTest(); 
    instance1.upper = true ; 
    Thread  t = new Thread  (instance1.Go); 
    t.Start(); 
    ThreadTest instance2 = new ThreadTest(); 
    instance2.Go();        // Main thread – runs with upper=false  
  } 
  
  void  Go() { Console .WriteLine (upper ? "HELLO!" : "hello!" ); } 

Naming Threads 
A thread can be named via its Name property. This is of great benefit in debugging: as well as being 
able to Console.WriteLine a thread’s name, Microsoft Visual Studio picks up a thread’s name and 
displays it in the Debug Location toolbar. A thread’s name can be set at any time – but only once – 
attempts to subsequently change it will throw an exception. 

Anonymous methods open the grotesque possibility of unintended interaction via outer 
variables if they are modified by either party subsequent to the thread starting. Intended 
interaction (usually via fields) is generally considered more than enough! Outer variables are 
best treated as ready-only once thread execution has begun – unless one's willing to implement 
appropriate locking semantics on both sides. 
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The application’s main thread can also be assigned a name – in the following example the main 
thread is accessed via the CurrentThread  static property: 

class  ThreadNaming { 
  static  void  Main() { 
    Thread . CurrentThread.Name = "main" ; 
    Thread  worker = new Thread  (Go); 
    worker. Name = "worker" ; 
    worker.Start(); 
    Go(); 
  } 
 
  static  void  Go() { 
    Console .WriteLine ( "Hello from "  + Thread .CurrentThread.Name); 
  } 
} 

Hello from main 
Hello from worker 

Foreground and Background Threads 
By default, threads are foreground threads, meaning they keep the application alive for as long as any 
one of them is running. C# also supports background threads, which don’t keep the application alive 
on their own – terminating immediately once all foreground threads have ended. 

A thread's IsBackground property controls its background status, as in the following example: 

class  PriorityTest { 
  static  void  Main ( string [] args) { 
    Thread  worker = new Thread  ( delegate () { Console .ReadLine(); }); 
    if  (args.Length > 0) worker. IsBackground = true ; 
    worker.Start(); 
  } 
} 

If the program is called with no arguments, the worker thread runs in its default foreground mode, 
and will wait on the ReadLine statement, waiting for the user to hit Enter. Meanwhile, the main 
thread exits, but the application keeps running because a foreground thread is still alive. 

If on the other hand an argument is passed to Main() , the worker is assigned background status, and 
the program exits almost immediately as the main thread ends – terminating the ReadLine. 

When a background thread terminates in this manner, any finally  blocks are circumvented. As 
circumventing finally  code is generally undesirable, it's good practice to explicitly wait for any 
background worker threads to finish before exiting an application – perhaps with a timeout (this is 
achieved by calling Thread.Join). If for some reason a renegade worker thread never finishes, one can 
then attempt to abort it, and if that fails, abandon the thread, allowing it to die with the process 
(logging the conundrum at this stage would also make sense!) 

Changing a thread from foreground to background doesn’t change its priority or status within 
the CPU scheduler in any way. 
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Having worker threads as background threads can then beneficial, for the very reason that it's always 
possible to have the last say when it comes to ending the application. Consider the alternative – 
foreground thread that won't die – preventing the application from exiting. An abandoned foreground 
worker thread is particularly insidious with a Windows Forms application, because the application 
will appear to exit when the main thread ends (at least to the user) but its process will remain running. 
In the Windows Task Manager, it will have disappeared from the Applications tab, although its 
executable filename still be visible in the Processes tab. Unless the user explicitly locates and ends 
the task, it will continue to consume resources and perhaps prevent a new instance of the application 
from starting or functioning properly. 

Thread Priority 
A thread’s Priority  property determines how much execution time it gets relative to other active 
threads in the same process, on the following scale:  

public enum  ThreadPriority 
  { Lowest, BelowNormal, Normal, AboveNormal, Highes t } 

This becomes relevant only when multiple threads are simultaneously active. 

Setting a thread’s priority to high doesn’t mean it can perform real-time work, because it’s still 
limited by the application’s process priority. To perform real-time work, the Process class in 
System.Diagnostics must also be used to elevate the process priority as follows (I didn't tell you how 
to do this): 

Process .GetCurrentProcess().PriorityClass = 
   ProcessPriorityClass .High; 

ProcessPriorityClass.High is actually one notch short of the highest process priority: Realtime. 
Setting one's process priority to Realtime instructs the operating system that you never want your 
process to be preempted. If your program enters an accidental infinite loop you can expect even the 
operating system to be locked out. Nothing short of the power button will rescue you! For this reason, 
High is generally considered the highest usable process priority. 

If the real-time application has a user interface, it can be undesirable to elevate the process priority 
because screen updates will be given excessive CPU time – slowing the entire computer, particularly 
if the UI is complex. (Although at the time of writing, the Internet telephony program Skype gets 
away with doing just this, perhaps because its UI is fairly simple). Lowering the main thread’s 
priority – in conjunction with raising the process’s priority – ensures the real-time thread doesn’t get 
preempted by screen redraws, but doesn’t prevent the computer from slowing, because the operating 
system will still allocate excessive CPU to the process as a whole. The ideal solution is to have the 
real-time work and user interface in separate processes (with different priorities), communicating via 
Remoting or shared memory. Shared memory requires P/Invoking the Win32 API (web-search 
CreateFileMapping and MapViewOfFile). 

A common cause for an application failing to exit properly is the presence of “forgotten” 
foregrounds threads. 
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Exception Handling 
Any try/catch/finally  blocks in scope when a thread is created are of no relevance once the thread 
starts executing. Consider the following program: 

public static void  Main() { 
  try  { 
    new Thread  (Go).Start(); 
  } 
  catch  ( Exception  ex) { 
    // We'll never get here!  
    Console .WriteLine ( "Exception!" ); 
  } 
  
  static void  Go() { throw null ; } 
} 

The try/catch statement in this example is effectively useless, and the newly created thread will be 
encumbered with an unhandled NullReferenceException. This behavior makes sense when you 
consider a thread has an independent execution path. The remedy is for thread entry methods to have 
their own exception handlers: 

public static void  Main() { 
  new Thread  (Go).Start(); 
} 
  
static void  Go() { 
  try  { 
    ... 
    throw null ;      // this exception will get caught below  
    ... 
  } 
  catch  ( Exception  ex) { 

    Typically log the exception, and/or signal another thread 

    that we've come unstuck 
    ... 
  } 

From .NET 2.0 onwards, an unhandled exception on any thread shuts down the whole application, 
meaning ignoring the exception is generally not an option. Hence a try/catch block is required in 
every thread entry method – at least in production applications – in order to avoid unwanted 
application shutdown in case of an unhandled exception. This can be somewhat cumbersome – 
particularly for Windows Forms programmers, who commonly use the "global" exception handler, as 
follows: 

static  class  Program  { 
  static  void  Main() { 
    Application.ThreadException += HandleError; 
    Application.Run ( new MainForm()); 
  }  
 
  static  void  HandleError ( object  sender, 
                           ThreadExceptionEventArgs  e) { 

    Log exception, then either exit the app or continue... 
  } 
} 
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The Application.ThreadException event fires when an exception is thrown from code that was 
ultimately called as a result of a Windows message (for example, a keyboard, mouse or "paint" 
message) – in short, nearly all code in a typical Windows Forms application. While this works 
perfectly, it lulls one into a false sense of security – that all exceptions will be caught by the central 
exception handler. Exceptions thrown on worker threads are a good example of exceptions not caught 
by Application.ThreadException (the code inside the Main  method is another – including the main 
form's constructor, which executes before the Windows message loop begins). 

The .NET framework provides a lower-level event for global exception handling: 
AppDomain.UnhandledException. This event fires when there's an unhandled exception in any 
thread, and in any type of application (with or without a user interface). However, while it offers a 
good last-resort mechanism for logging untrapped exceptions, it provides no means of preventing the 
application from shutting down – and no means to suppress the .NET unhandled exception dialog. 

In production applications, explicit exception handling is required on all thread entry methods. 
One can cut the work by using a wrapper or helper class to perform the job, such as 
BackgroundWorker  (discussed in Part 3). 
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PART 2 
BASIC SYNCHRONIZATION 

Synchronization Essentials 
The following summarize the .NET tools for coordinating or synchronizing the actions of threads: 

Simple Blocking Methods 

Construct Purpose 

Sleep Blocks for a given time period. 

Join Waits for another thread to finish. 

Locking Constructs 

Construct Purpose 
Cross-
Process? Speed 

lock Ensures just one thread can access a resource, or section of code.  no fast 

Mutex 
Ensures just one thread can access a resource, or section of code. 
Can be used to prevent multiple instances of an application from 
starting. 

yes moderate 

Semaphore 
Ensures not more than a specified number of threads can access a 
resource, or section of code. 

yes moderate 

Signaling Constructs 

Construct Purpose Cross-
Process? Speed 

EventWaitHandle 
Allows a thread to wait until it receives a signal 
from another thread. 

yes moderate 

Wait and Pulse* 
Allows a thread to wait until a custom blocking 
condition is met.  

no moderate 

Non-Blocking Synchronization Constructs* 

Construct Purpose Cross-
Process? 

Speed 

Interlocked* To perform simple non-blocking atomic operations. yes (assuming 
shared 
memory) 

very fast 

volatile* 
To allow safe non-blocking access to individual fields 
outside of a lock. 

very fast 

*Covered in Part 4 
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Blocking 
When a thread waits or pauses as a result of using the constructs listed in the tables above, it's said to 
be blocked. Once blocked, a thread immediately relinquishes its allocation of CPU time, adds 
WaitSleepJoin to its ThreadState property, and doesn’t get re-scheduled until unblocked. Unblocking 
happens in one of four ways (the computer's power button doesn't count!): 

• by the blocking condition being satisfied 

• by the operation timing out (if a timeout is specified) 

• by being interrupted via Thread.Interrupt 

• by being aborted via Thread.Abort 

A thread is not deemed blocked if its execution is paused via the (deprecated) Suspend method.  

Sleeping and Spinning 
Calling Thread.Sleep blocks the current thread for the given time period (or until interrupted): 

static  void  Main() { 
  Thread .Sleep (0);                     // relinquish CPU time-slice  
  Thread .Sleep (1000);                   // sleep for 1000 ms  
  Thread .Sleep ( TimeSpan .FromHours (1)); // sleep for 1 hour  
  Thread .Sleep ( Timeout .Infinite);       // sleep until interrupted  
} 

More precisely, Thread.Sleep relinquishes the CPU, requesting that the thread is not re-scheduled 
until the given time period has elapsed. Thread.Sleep(0) relinquishes the CPU just long enough to 
allow any other active threads present in a time-slicing queue (should there be one) to be executed. 

The Thread class also provides a SpinWait method, which doesn’t relinquish any CPU time, instead 
looping the CPU – keeping it “uselessly busy” for the given number of iterations. 50 iterations might 
equate to a pause of around a microsecond, although this depends on CPU speed and load. 
Technically, SpinWait is not a blocking method: a spin-waiting thread does not have a ThreadState 
of WaitSleepJoin and can’t be prematurely Interrupt ed by another thread. SpinWait is rarely used 
– its primary purpose being to wait on a resource that’s expected to be ready very soon (inside maybe 
a microsecond) without calling Sleep and wasting CPU time by forcing a thread change. However 
this technique is advantageous only on multi-processor computers: on single-processor computers, 
there’s no opportunity for a resource’s status to change until the spinning thread ends its time-slice – 
which defeats the purpose of spinning to begin with. And calling SpinWait often or for long periods 
of time itself is wasteful on CPU time. 

Thread.Sleep is unique amongst the blocking methods in that suspends Windows message 
pumping within a Windows Forms application, or COM environment on a thread for which the 
single-threaded apartment model is used. This is of little consequence with Windows Forms 
applications, in that any lengthy blocking operation on the main UI thread will make the 
application unresponsive – and is hence generally avoided – regardless of the whether or not 
message pumping is "technically" suspended. The situation is more complex in a legacy COM 
hosting environment, where it can sometimes be desirable to sleep while keeping message 
pumping alive. Microsoft's Chris Brumme discusses this at length in his web log (search: 
'COM "Chris Brumme" '). 
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Blocking vs. Spinning 

A thread can wait for a certain condition by explicitly spinning using a polling loop, for example: 

while  (!proceed); 

or: 

while  ( DateTime .Now < nextStartTime); 

This is very wasteful on CPU time: as far as the CLR and operating system is concerned, the thread is 
performing an important calculation, and so gets allocated resources accordingly! A thread looping in 
this state is not counted as blocked, unlike a thread waiting on an EventWaitHandle (the construct 
usually employed for such signaling tasks). 

A variation that's sometimes used is a hybrid between blocking and spinning: 

while  (!proceed) Thread .Sleep (x);    // "Spin-Sleeping!"  

The larger x, the more CPU-efficient this is; the trade-off being in increased latency. Anything above 
20ms incurs a negligible overhead – unless the condition in the while-loop is particularly complex. 

Except for the slight latency, this combination of spinning and sleeping can work quite well (subject 
to concurrency issues on the proceed flag, discussed in Part 4). Perhaps its biggest use is when a 
programmer has given up on getting a more complex signaling construct to work! 

Joining a Thread 
You can block until another thread ends by calling Join: 

class  JoinDemo  { 
  static void  Main() { 
    Thread  t = new Thread  ( delegate () { Console .ReadLine(); }); 
    t.Start(); 
    t. Join();    // Wait until thread t finishes  
    Console .WriteLine ( "Thread t's ReadLine complete!" ); 
  } 
} 

The Join method also accepts a timeout argument – in milliseconds, or as a TimeSpan, returning 
false if the Join timed out rather than found the end of the thread. Join with a timeout functions rather 
like Sleep – in fact the following two lines of code are almost identical: 

Thread .Sleep (1000); 
Thread .CurrentThread.Join (1000); 

(Their difference is apparent only in single-threaded apartment applications with COM 
interoperability, and stems from the subtleties in Windows message pumping semantics described 
previously: Join keeps message pumping alive while blocked; Sleep suspends message pumping). 

Locking and Thread Safety 
Locking enforces exclusive access, and is used to ensure only one thread can enter particular sections 
of code at a time. For example, consider following class: 
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class  ThreadUnsafe  { 
  static  int  val1, val2; 
  
  static void  Go() { 
    if (val2 != 0) Console .WriteLine (val1 / val2); 
    val2 = 0; 
  } 
} 

This is not thread-safe: if Go was called by two threads simultaneously it would be possible to get a 
division by zero error – because val2 could be set to zero in one thread right as the other thread was 
in between executing the if  statement and Console.WriteLine. 

Here’s how lock can fix the problem: 

class  ThreadSafe  { 
  static  object  locker = new object (); 
  static  int  val1, val2; 
  
  static  void  Go() { 
    lock (locker) { 
      if  (val2 != 0) Console .WriteLine (val1 / val2); 
      val2 = 0; 
    } 
  } 
} 

Only one thread can lock the synchronizing object (in this case locker) at a time, and any contending 
threads are blocked until the lock is released. If more than one thread contends the lock, they are 
queued – on a “ready queue” and granted the lock on a first-come, first-served basis as it becomes 
available. Exclusive locks are sometimes said to enforce serialized access to whatever's protected by 
the lock, because one thread's access cannot overlap with that of another. In this case, we're protecting 
the logic inside the Go method, as well as the fields val1 and val2.  

A thread blocked while awaiting a contended lock has a ThreadState of  WaitSleepJoin. Later we 
discuss how a thread blocked in this state can be forcibly released via another thread calling its 
Interrupt or Abort method. This is a fairly heavy-duty technique that might typically be used in 
ending a worker thread. 

C#’s lock statement is in fact a syntactic shortcut for a call to the methods Monitor.Enter  and 
Monitor.Exit , within a try-finally block. Here’s what’s actually happening within the Go method of 
the previous example: 

Monitor.Enter (locker); 
try  { 
  if  (val2 != 0) Console .WriteLine (val1 / val2); 
  val2 = 0; 
} 
finally  { Monitor.Exit (locker); }   
  

Calling Monitor.Exit  without first calling Monitor.Enter  on the same object throws an exception. 

Monitor  also provides a TryEnter  method allows a timeout to be specified – either in milliseconds 
or as a TimeSpan. The method then returns true – if a lock was obtained – or false – if no lock was 
obtained because the method timed out.  TryEnter  can also be called with no argument, which "tests" 
the lock, timing out immediately if the lock can’t be obtained right away. 
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Choosing the Synchronization Object 
Any object visible to each of the partaking threads can be used as a synchronizing object, subject to 
one hard rule: it must be a reference type. It’s also highly recommended that the synchronizing object 
be privately scoped to the class (i.e. a private instance field) to prevent an unintentional interaction 
from external code locking the same object. Subject to these rules, the synchronizing object can 
double as the object it's protecting, such as with the list field below: 

class  ThreadSafe  { 
  List  < string > list = new List  < string >(); 
  
  void  Test() { 
    lock  (list) { 
      list.Add ( "Item 1" ); 
      ... 

A dedicated field is commonly used (such as locker, in the example prior), because it allows precise 
control over the scope and granularity of the lock. Using the object or type itself as a synchronization 
object, i.e.: 

lock  (this) { ... } 

or: 

lock  ( typeof (Widget)) { ... }    // For protecting access to st atics 

is discouraged because it potentially offers public scope to the synchronization object.  

Nested Locking 
A thread can repeatedly lock the same object, either via multiple calls to Monitor.Enter , or via 
nested lock statements. The object is then unlocked when a corresponding number of Monitor.Exit  
statements have executed, or the outermost lock statement has exited. This allows for the most natural 
semantics when one method calls another as follows: 

static  object  x = new object (); 
  
static  void  Main() { 
  lock  (x) { 
     Console .WriteLine ( "I have the lock" ); 
     Nest(); 
     Console .WriteLine ( "I still have the lock" ); 
  } 

  Here the lock is released. 
} 
  
static void  Nest() { 
  lock  (x) { 
    ...  
  } 

  Released the lock? Not quite! 
} 

Locking doesn't restrict access to the synchronizing object itself in any way. In other words, 
x.ToString() will not block because another thread has called lock(x) – both threads must call 
lock(x) in order for blocking to occur. 
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A thread can block only on the first, or outermost lock. 

When to Lock 
As a basic rule, any field accessible to multiple threads should be read and written within a lock. Even 
in the simplest case – an assignment operation on a single field – one must consider synchronization. 
In the following class, neither the Increment nor the Assign method is thread-safe: 

class  ThreadUnsafe  { 
  static  int  x; 
  static void  Increment() { x++; } 
  static void  Assign()    { x = 123; } 
} 

Here are thread-safe versions of Increment and Assign: 

class  ThreadUnsafe  { 
  static  object locker = new object (); 
  static  int  x; 
  
  static void  Increment() { lock  (locker) x++; } 
  static void  Assign()    { lock  (locker) x = 123; } 
} 

As an alternative to locking, one can use a non-blocking synchronization construct in these simple 
situations. This is discussed in Part 4 (along with the reasons that such statements require 
synchronization). 

Locking and Atomicity 

If a group of variables are always read and written within the same lock, then one can say the 
variables are read and written atomically. Let's suppose fields x and y are only ever read or assigned 
within a lock on object locker: 

lock  (locker) { if  (x != 0) y /= x; } 

One can say x and y are accessed atomically, because the code block cannot be divided or preempted 
by the actions of another thread in such a way that will change x or y and invalidate its outcome. 
You'll never get a division-by-zero error, providing x and y are always accessed within this same 
exclusive lock. 

Performance Considerations 
Locking itself is very fast: a lock is typically obtained in tens of nanoseconds assuming no blocking. 
If blocking occurs, the consequential task-switching moves the overhead closer to the microseconds-
region, although it may be milliseconds before the thread's actually rescheduled. This, in turn, is 
dwarfed by the hours of overhead – or overtime – that can result from not locking when you should 
have! 

Locking can have adverse effects if improperly used – impoverished concurrency, deadlocks and lock 
races. Impoverished concurrency occurs when too much code is placed in a lock statement, causing 
other threads to block unnecessarily. A deadlock is when two threads each wait for a lock held by the 
other, and so neither can proceed. A lock race happens when it’s possible for either of two threads to 
obtain a lock first, the program breaking if the “wrong” thread wins. 
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Deadlocks are most commonly a syndrome of too many synchronizing 
objects. A good rule is to start on the side of having fewer objects on 
which to lock, increasing the locking granularity when a plausible 
scenario involving excessive blocking arises. 

Thread Safety 
Thread-safe code is code which has no indeterminacy in the face of 
any multithreading scenario. Thread-safety is achieved primarily with 
locking, and by reducing the possibilities for interaction between 
threads. 

• A method which is thread-safe in any scenario is called 
reentrant. General-purpose types are rarely thread-safe in 
their entirety, for the following reasons:the development 
burden in full thread-safety can be significant, particularly if 
a type has many fields (each field is a potential for 
interaction in an arbitrarily multi-threaded context) 

• thread-safety can entail a performance cost (payable, in part, 
whether or not the type is actually used by multiple threads) 

• a thread-safe type does not necessarily make the program 
using it thread-safe – and sometimes the work involved in 
the latter can make the former redundant. 

Thread-safety is hence usually implemented just where it needs to be, 
in order to handle a specific multithreading scenario. 

There are, however, a few ways to "cheat" and have large and complex 
classes run safely in a multi-threaded environment. One is to sacrifice 
granularity by wrapping large sections of code – even access to an 
entire object – around an exclusive lock – enforcing serialized access 
at a high level. This tactic is also crucial in allowing a thread-unsafe 
object to be used within thread-safe code – and is valid providing the 
same exclusive lock is used to protect access to all properties, methods 
and fields on the thread-unsafe object. 
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Another way to cheat is to minimize thread interaction by minimizing shared data. This is an 
excellent approach and is used implicitly in "stateless" middle-tier application and web page servers. 
Since multiple client requests can arrive simultaneously, each request comes in on its own thread (by 
virtue of the ASP.NET, Web Services or Remoting architectures), and this means the methods they 
call must be thread-safe. A stateless design (popular for reasons of scalability) intrinsically limits the 
possibility of interaction, since classes are unable to persist data between each request. Thread 
interaction is then limited just to static fields one may choose to create – perhaps for the purposes of 

Primitive types aside, very few .NET framework types when instantiated are thread-safe for 
anything more than concurrent read-only access. The onus is on the developer to superimpose 
thread-safety – typically using exclusive locks. 
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caching commonly used data in memory – and in providing infrastructure services such as 
authentication and auditing. 

Thread-Safety and .NET Framework Types 

Locking can be used to convert thread-unsafe code into thread-safe code. A good example is with the 
.NET framework – nearly all of its non-primitive types are not thread safe when instantiated, and yet 
they can be used in multi-threaded code if all access to any given object is protected via a lock. Here's 
an example, where two threads simultaneously add items to the same List  collection, then enumerate 
the list: 

class  ThreadSafe  { 
  static  List  < string > list = new List  < string >(); 
  
  static  void  Main() { 
    new Thread  (AddItems).Start(); 
    new Thread  (AddItems).Start(); 
  } 
  
  static  void  AddItems() { 
    for  ( int  i = 0; i < 100; i++) 
      lock (list) 
        list.Add ( "Item "  + list.Count); 
  
    string [] items; 
    lock  (list) items = list.ToArray(); 
    foreach  ( string  s in  items) Console .WriteLine (s); 
  } 
} 

In this case, we're locking on the list object itself, which is fine in this simple scenario. If we had two 
interrelated lists, however, we would need to lock upon a common object – perhaps a separate field, if 
neither list presented itself as the obvious candidate. 

Enumerating .NET collections is also thread-unsafe in the sense that an exception is thrown if another 
thread alters the list during enumeration. Rather than locking for the duration of enumeration, in this 
example, we first copy the items to an array. This avoids holding the lock excessively if what we're 
doing during enumeration is potentially time-consuming.  

Here's an interesting supposition: imagine if the List  class was, indeed, thread-safe. What would it 
solve? Potentially, very little! To illustrate, let's say we wanted to add an item to our hypothetical 
thread-safe list, as follows: 

if  (!myList.Contains (newItem)) myList.Add (newItem);  

Whether or not the list was thread-safe, this statement is certainly not! The whole if  statement would 
have to be wrapped in a lock – to prevent preemption in between testing for containership and adding 
the new item. This same lock would then need to be used everywhere we modified that list. For 
instance, the following statement would also need to be wrapped – in the identical lock: 

myList.Clear(); 

to ensure it did not preempt the former statement. In other words, we would have to lock almost 
exactly as with our thread-unsafe collection classes. Built-in thread safety, then, can actually be a 
waste of time! 

One could argue this point when writing custom components – why build in thread-safety when it can 
easily end up being redundant?  
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There is a counter-argument: wrapping an object around a custom lock works only if all concurrent 
threads are aware of, and use, the lock – which may not be the case if the object is widely scoped. The 
worst scenario crops up with static members in a public type. For instance, imagine the static property 
on the DateTime struct, DateTime.Now, was not thread-safe, and that two concurrent calls could 
result in garbled output or an exception. The only way to remedy this with external locking might be 
to lock the type itself –  lock(typeof(DateTime)) – around calls to DateTime.Now – which would 
work only if all programmers agreed to do this. And this is unlikely, given that locking a type is 
considered by many, a Bad Thing! 

For this reason, static members on the DateTime struct are guaranteed to be thread-safe. This is a 
common pattern throughout the .NET framework – static members are thread-safe, while instance 
members are not. Following this pattern also makes sense when writing custom types, so as not to 
create impossible thread-safety conundrums! 

Interrupt and Abort 
A blocked thread can be released prematurely in one of two ways: 

• via Thread.Interrupt 

• via Thread.Abort 

This must happen via the activities of another thread; the waiting thread is powerless to do anything 
in its blocked state. 

Interrupt 
Calling Interrupt  on a blocked thread forcibly releases it, throwing a ThreadInterruptedException , 
as follows: 

class  Program  { 
  static void  Main() { 
    Thread  t = new Thread  ( delegate () { 
      try  { 
        Thread .Sleep ( Timeout .Infinite); 
      } 
      catch  ( ThreadInterruptedException ) { 
        Console .Write ( "Forcibly " ); 
      } 
      Console .WriteLine ( "Woken!" ); 
    }); 
  
    t.Start(); 
    t. Interrupt(); 
  } 
} 

Forcibly Woken! 

When writing components for public consumption, a good policy is to program at least such as 
not to preclude thread-safety. This means being particularly careful with static members – 
whether used internally or exposed publicly. 
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Interrupting a thread only releases it from its current (or next) wait: it does not cause the thread to end 
(unless, of course, the ThreadInterruptedException  is unhandled!) 

If Interrupt  is called on a thread that’s not blocked, the thread continues executing until it next 
blocks, at which point a ThreadInterruptedException  is thrown. This avoids the need for the 
following test: 

if  ((worker.ThreadState & ThreadState .WaitSleepJoin) > 0) 
  worker.Interrupt(); 

which is not thread-safe because of the possibility of being preempted in between the if  statement and 
worker.Interrupt .  

Interrupting a thread arbitrarily is dangerous, however, because any framework or third-party 
methods in the calling stack could unexpectedly receive the interrupt rather than your intended code. 
All it would take is for the thread to block briefly on a simple lock or synchronization resource, and 
any pending interruption would kick in. If the method wasn't designed to be interrupted (with 
appropriate cleanup code in finally blocks) objects could be left in an unusable state, or resources 
incompletely released.  

Interrupting a thread is safe when you know exactly where the thread is. Later we cover signaling 
constructs, which provide just such a means. 

Abort 
A blocked thread can also be forcibly released via its Abort  method. This has an effect similar to 
calling Interrupt , except that a ThreadAbortException is thrown instead of a 
ThreadInterruptedException . Furthermore, the exception will be re-thrown at the end of the catch 
block (in an attempt to terminate the thread for good) unless Thread.ResetAbort is called within the 
catch block. In the interim, the thread has a ThreadState of AbortRequested. 

The big difference, though, between Interrupt  and Abort , is what happens when it's called on a 
thread that is not blocked. While Interrupt  waits until the thread next blocks before doing anything, 
Abort  throws an exception on the thread right where it's executing – maybe not even in your code. 
Aborting a non-blocked thread can have significant consequences, the details of which are explored 
in the later section "Aborting Threads". 
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Thread State 

 

Figure 1: Thread State Diagram 

One can query a thread's execution status via its ThreadState property. Figure 1 shows one "layer" of 
the ThreadState enumeration. ThreadState is horribly designed, in that it combines three "layers" of 
state using bitwise flags, the members within each layer being themselves mutually exclusive. Here 
are all three layers: 

• the running / blocking / aborting status (as shown in Figure 1) 

• the background/foreground status (ThreadState.Background) 

• the progress towards suspension via the deprecated Suspend method 
(ThreadState.SuspendRequested and ThreadState.Suspended) 

In total then, ThreadState is a bitwise combination of zero or one members from each layer! Here 
are some sample ThreadStates: 

Unstarted 
Running 
WaitSleepJoin 
Background, Unstarted 
SuspendRequested, Background, WaitSleepJoin 

(The enumeration has two members that are never used, at least in the current CLR implementation: 
StopRequested and Aborted.) 

To complicate matters further, ThreadState.Running has an underlying value of 0, so the following 
test does not work: 

if  ((t.ThreadState & ThreadState .Running) > 0) ... 

and one must instead test for a running thread by exclusion, or alternatively, use the thread's IsAlive 
property. IsAlive, however, might not be what you want. It returns true if the thread's blocked or 
suspended (the only time it returns false is before the thread has started, and after it has ended). 

Assuming one steers clear of the deprecated Suspend and Resume methods, one can write a helper 
method that eliminates all but members of the first layer, allowing simple equality tests to be 
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performed. A thread's background status can be obtained independently via its IsBackground 
property, so only the first layer actually has useful information: 

public  static  ThreadState  SimpleThreadState ( ThreadState  ts) 
{ 
  return  ts & (ThreadState .Aborted | ThreadState .AbortRequested | 
               ThreadState .Stopped | ThreadState .Unstarted | 
               ThreadState .WaitSleepJoin); 
} 

ThreadState is invaluable for debugging or profiling. It's poorly suited, however, to coordinating 
multiple threads, because no mechanism exists by which one can test a ThreadState and then act 
upon that information, without the ThreadState potentially changing in the interim. 

Wait Handles 
The lock statement (aka Monitor.Enter  / Monitor.Exit ) is one example of a thread synchronization 
construct. While lock is suitable for enforcing exclusive access to a particular resource or section of 
code, there are some synchronization tasks for which it's clumsy or inadequate, such as signaling a 
waiting worker thread to begin a task. 

The Win32 API has a richer set of synchronization constructs, and these are exposed in the .NET 
framework via the EventWaitHandle, Mutex and Semaphore classes. Some are more useful than 
others: the Mutex class, for instance, mostly doubles up on what's provided by lock, while 
EventWaitHandle provides unique signaling functionality. 

All three classes are based on the abstract WaitHandle class, although behaviorally, they are quite 
different. One of the things they do all have in common is that they can, optionally, be "named", 
allowing them to work across all operating system processes, rather than across just the threads in the 
current process. 

EventWaitHandle has two subclasses: AutoResetEvent and ManualResetEvent (neither being 
related to a C# event or delegate). Both classes derive all their functionality from their base class: 
their only difference being that they call the base class's constructor with a different argument.  

In terms of performance, the overhead with all Wait Handles typically runs in the few-microseconds 
region. Rarely is this of consequence in the context in which they are used.  

AutoResetEvent 
An AutoResetEvent is much like a ticket turnstile: inserting a ticket lets exactly one person through. 
The "auto" in the class's name refers to the fact that an open turnstile automatically closes or "resets" 
after someone is let through. A thread waits, or blocks, at the turnstile by calling WaitOne (wait at 
this "one" turnstile until it opens) and a ticket is inserted by calling the Set method. If a number of 
threads call WaitOne, a queue builds up behind the turnstile. A ticket can come from any thread – in 
other words, any (unblocked) thread with access to the AutoResetEvent object can call Set on it to 
release one blocked thread. 

AutoResetEvent is the most useful of the WaitHandle classes, and is a staple synchronization 
construct, along with the lock statement. 
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If Set is called when no thread is waiting, the handle stays open for as long as it takes until some 
thread to call WaitOne. This behavior helps avoid a race between a thread heading for the turnstile, 
and a thread inserting a ticket ("oops, inserted the ticket a microsecond too soon, bad luck, now you'll 
have to wait indefinitely!") However calling Set repeatedly on a turnstile at which no-one is waiting 
doesn't allow a whole party through when they arrive: only the next single person is let through and 
the extra tickets are "wasted". 

WaitOne accepts an optional timeout parameter – the method then returns false if the wait ended 
because of a timeout rather than obtaining the signal. WaitOne can also be instructed to exit the 
current synchronization context for the duration of the wait (if an automatic locking regime is in use) 
in order to prevent excessive blocking. 

A Reset method is also provided that closes the turnstile – should it be open, without any waiting or 
blocking. 

An AutoResetEvent can be created in one of two ways. The first is via its constructor:  

EventWaitHandle  wh = new AutoResetEvent  ( false ); 

If the boolean argument is true, the handle's Set method is called automatically, immediately after 
construction. The other method of instantiatation is via its base class, EventWaitHandle: 

EventWaitHandle  wh = new EventWaitHandle  ( false , 
                                          EventResetMode .Auto); 

EventWaitHandle's constructor also allows a ManualResetEvent to be created (by specifying 
EventResetMode.Manual). 

One should call Close on a Wait Handle to release operating system resources once it's no longer 
required. However, if a Wait Handle is going to be used for the life of an application (as in most of 
the examples in this section), one can be lazy and omit this step as it will be taken care of 
automatically during application domain tear-down. 

In the following example, a thread is started whose job is simply to wait until signaled by another 
thread: 

class  BasicWaitHandle  { 
  static  EventWaitHandle wh = new AutoResetEvent ( false ); 
  
  static  void  Main() { 
    new Thread  (Waiter).Start(); 
    Thread .Sleep (1000);                  // Wait for some time...  
    wh. Set();                             // OK - wake it up  
  } 
  static  void  Waiter() { 
    Console .WriteLine ( "Waiting..." ); 
    wh. WaitOne();                        // Wait for notification  
    Console .WriteLine ( "Notified" ); 
  } 
} 

Waiting... (pause) Notified. 

Creating a Cross-Process EventWaitHandle 

EventWaitHandle's constructor also allows a "named" EventWaitHandle to be created – capable of 
operating across multiple processes. The name is simply a string – and can be any value that doesn't 
unintentionally conflict with someone else's! If the name is already in use on the computer, one gets a 
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reference to the same underlying EventWaitHandle, otherwise the operating system creates a new 
one. Here's an example: 

EventWaitHandle  wh = new EventWaitHandle  ( false , EventResetMode .Auto, 
  "MyCompany.MyApp.SomeName" ); 

If two applications each ran this code, they would be able to signal each other: the wait handle would 
work across all threads in both processes. 

Acknowledgement 

Supposing we wish to perform tasks in the background without the overhead of creating a new thread 
each time we get a task. We can achieve this with a single worker thread that continually loops – 
waiting for a task, executing it, and then waiting for the next task. This is a common multithreading 
scenario. As well as cutting the overhead in creating threads, task execution is serialized, eliminating 
the potential for unwanted interaction between multiple workers and excessive resource consumption. 

We have to decide what to do, however, if the worker's already busy with previous task when a new 
task comes along. Suppose in this situation we choose to block the caller until the previous task is 
complete. Such a system can be implemented using two AutoResetEvent objects: a "ready" 
AutoResetEvent that's Set by the worker when it's ready, and a "go" AutoResetEvent that's Set by 
the calling thread when there's a new task. In the example below, a simple string field is used to 
describe the task (declared using the volatile keyword to ensure both threads always see the same 
version): 

class AcknowledgedWaitHandle  { 
  static  EventWaitHandle  ready = new AutoResetEvent  ( false ); 
  static  EventWaitHandle  go = new AutoResetEvent  ( false ); 
  static  volatile  string  task; 
  
  static  void  Main() { 
    new Thread  (Work).Start(); 
  
    // Signal the worker 5 times  
    for  ( int  i = 1; i <= 5; i++) { 
      ready.WaitOne();                // First wait until worker is ready  
      task = "a" .PadRight (i, 'h' );   // Assign a task  
      go.Set();                       // Tell worker to go!  
    } 
  
    // Tell the worker to end using a null-task  
    ready.WaitOne(); task = null ; go.Set(); 
  } 
  
  static  void  Work() { 
    while  ( true ) { 
      ready.Set();                          // Indicate that we're ready  
      go.WaitOne();                         // Wait to be kicked off...  
      if  (task == null ) return ;             // Gracefully exit  
      Console .WriteLine (task); 
    } 
  } 
} 

ah 
ahh 
ahhh 
ahhhh 
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Notice that we assign a null task to signal the worker thread to exit. Calling Interrupt or Abort on the 
worker's thread in this case would work equally well – providing we first called ready.WaitOne. 
This is because after calling ready.WaitOne we can be certain on the location of the worker – either 
on or just before the go.WaitOne statement – and thereby avoid the complications of interrupting 
arbitrary code. Calling Interrupt  or Abort  would also also require that we caught the consequential 
exception in the worker. 

Producer/Consumer Queue 

Another common threading scenario is to have a background worker process tasks from a queue. This 
is called a Producer/Consumer queue: the producer enqueues tasks; the consumer dequeues tasks on a 
worker thread. It's rather like the previous example, except that the caller doesn't get blocked if the 
worker's already busy with a task. 

A Producer/Consumer queue is scaleable, in that multiple consumers can be created – each servicing 
the same queue, but on a separate thread. This is a good way to take advantage of multi-processor 
systems while still restricting the number of workers so as to avoid the pitfalls of unbounded 
concurrent threads (excessive context switching and resource contention). 

In the example below, a single AutoResetEvent is used to signal the worker, which waits only if it 
runs out of tasks (when the queue is empty). A generic collection class is used for the queue, whose 
access must be protected by a lock to ensure thread-safety. The worker is ended by enqueing a null 
task: 

using  System; 
using  System.Threading; 
using  System.Collections.Generic; 
  
class  ProducerConsumerQueue  : IDisposable  { 
  EventWaitHandle  wh = new AutoResetEvent  ( false ); 
  Thread  worker; 
  object  locker = new object (); 
  Queue<string > tasks = new Queue<string >(); 
  
  public  ProducerConsumerQueue() { 
    worker = new Thread  (Work); 
    worker.Start(); 
  } 
  
  public  void  EnqueueTask ( string  task) { 
    lock  (locker) tasks.Enqueue (task); 
    wh. Set(); 
  } 
  
  public  void  Dispose() { 
    EnqueueTask ( null );     // Signal the consumer to exit.  
    worker.Join();          // Wait for the consumer's thread to finish.  
    wh. Close();             // Release any OS resources.  
  } 
  
  void  Work() { 
    while  ( true ) { 
      string  task = null ; 
      lock  (locker) 
        if  (tasks.Count > 0) { 
          task = tasks.Dequeue(); 
          if  (task == null ) return ; 
        } 
      if  (task != null ) { 
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        Console .WriteLine ( "Performing task: "  + task); 
        Thread .Sleep (1000);  // simulate work...  
      } 
      else  
        wh. WaitOne();         // No more tasks - wait for a signal  
    } 
  } 
} 

Here's a main method to test the queue: 

class  Test  { 
  static  void  Main() { 
    using  ( ProducerConsumerQueue  q = new ProducerConsumerQueue ()) { 
      q.EnqueueTask ( "Hello" ); 
      for  ( int  i = 0; i < 10; i++) q.EnqueueTask ( "Say "  + i); 
      q.EnqueueTask ( "Goodbye!" ); 
    } 
    // Exiting the using statement calls q's Dispose me thod, which  
    // enqueues a null task and waits until the consume r finishes.  
  } 
} 

Performing task: Hello 
Performing task: Say 1 
Performing task: Say 2 
Performing task: Say 3 

... 

... 
Performing task: Say 9 
Goodbye! 

Note that in this example we explicitly close the Wait Handle when our ProducerConsumerQueue 
is disposed – since we could potentially create and destroy many instances of this class within the life 
of the application. 

ManualResetEvent 
A ManualResetEvent is a variation on AutoResetEvent. It differs in that it doesn't automatically 
reset after a thread is let through on a WaitOne call, and so functions like a gate: calling Set opens 
the gate, allowing any number of threads that WaitOne at the gate through; calling Reset closes the 
gate, causing, potentially, a queue of waiters to accumulate until its next opened. 

One could simulate this functionality with a boolean "gateOpen" field (declared with the volatile 
keyword) in combination with " spin-sleeping" – repeatedly checking the flag, and then sleeping for 
a short period of time. 

ManualResetEvents are sometimes used to signal that a particular operation is complete, or that a 
thread's completed initialization and is ready to perform work. 

Mutex 
Mutex provides the same functionality as C#'s lock statement, making Mutex mostly redundant. Its 
one advantage is that it can work across multiple processes – providing a computer-wide lock rather 
than an application-wide lock. 
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With a Mutex class, the WaitOne method obtains the exclusive lock, blocking if it's contended. The 
exclusive lock is then released with the ReleaseMutex method. Just like with C#'s lock statement, a 
Mutex can only be released from the same thread that obtained it. 

A common use for a cross-process Mutex is to ensure that only instance of a program can run at a 
time. Here's how it's done: 

class  OneAtATimePlease  { 
  // Use a name unique to the application (eg include  your company URL)  
  static  Mutex mutex = new Mutex ( false , "oreilly.com OneAtATimeDemo" ); 
   
  static  void  Main() { 
    // Wait 5 seconds if contended – in case another in stance  
    // of the program is in the process of shutting dow n.  
  
    if  (!mutex. WaitOne ( TimeSpan .FromSeconds (5), false )) { 
      Console .WriteLine ( "Another instance of the app is running. Bye!" ); 
      return ; 
    } 
    try  { 
      Console .WriteLine ( "Running - press Enter to exit" ); 
      Console .ReadLine(); 
    } 
    finally  { mutex. ReleaseMutex(); } 
  } 
} 

A good feature of Mutex is that if the application terminates without ReleaseMutex first being 
called, the CLR will release the Mutex automatically. 

Semaphore 
A Semaphore is like a nightclub: it has a certain capacity, enforced by a bouncer. Once full, no more 
people can enter the nightclub and a queue builds up outside. Then, for each person that leaves, one 
person can enter from the head of the queue. The constructor requires a minimum of two arguments – 
the number of places currently available in the nightclub, and the nightclub's total capacity. 

A Semaphore with a capacity of one is similar to a Mutex or lock, except that the Semaphore has 
no "owner" – it's thread-agnostic. Any thread can call Release on a Semaphore, while with Mutex 
and lock, only the thread that obtained the resource can release it. 

In this following example, ten threads execute a loop with a Sleep statement in the middle. A 
Semaphore ensures that not more than three threads can execute that Sleep statement at once: 

While Mutex is reasonably fast, lock is a hundred times faster again. Acquiring a Mutex takes 
a few microseconds; acquiring a lock takes tens of nanoseconds (assuming no blocking). 
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class  SemaphoreTest  { 
  static  Semaphore s = new Semaphore (3, 3);  // Available=3; Capacity=3  
  
  static  void  Main() { 
    for  ( int  i = 0; i < 10; i++) new Thread  (Go).Start(); 
  } 
  
  static  void  Go() { 
    while  ( true ) { 
      s. WaitOne(); 
      Thread .Sleep (100);   // Only 3 threads can get here at once  
      s. Release(); 
    } 
  } 
} 

WaitAny, WaitAll and SignalAndWait 
In addition to the Set and WaitOne methods, there are static methods on the WaitHandle class to 
crack more complex synchronization nuts. 

The WaitAny , WaitAll  and SignalAndWait methods facilitate waiting across multiple Wait 
Handles, potentially of differing types. 

SignalAndWait is perhaps the most useful: it calls WaitOne on one WaitHandle, while calling Set 
on another WaitHandle – in an atomic operation. One can use method this on a pair of 
EventWaitHandles to set up two threads so they "meet" at the same point in time, in a textbook 
fashion. Either AutoResetEvent or ManualResetEvent will do the trick. The first thread does the 
following: 

WaitHandle .SignalAndWait (wh1, wh2); 

while the second thread does the opposite: 

WaitHandle .SignalAndWait (wh2, wh1); 

WaitHandle.WaitAny  waits for any one of an array of wait handles; WaitHandle.WaitAll  waits on 
all of the given handles. Using the ticket turnstile analogy, these methods are like simultaneously 
queuing at all the turnstiles – going through at the first one to open (in the case of WaitAny ), or 
waiting until they all open (in the case of WaitAll ). 

WaitAll  is actually of dubious value because of a weird connection to apartment threading – a 
throwback from the legacy COM architecture. WaitAll  requires that the caller be in a multi-threaded 
apartment – which happens to be the apartment model least suitable for interoperability – particularly 
for Windows Forms applications, which need to perform tasks as mundane as interacting with the 
clipboard! 

Fortunately, the .NET framework provides a more advanced signaling mechanism for when Wait 
Handles are awkward or unsuitable – Monitor.Wait  and Monitor.Pulse. 
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Synchronization Contexts 
Rather than locking manually, one can lock declaratively. By deriving from ContextBoundObject 
and applying the Synchronization attribute, one instructs the CLR to apply locking automatically. 
Here's an example:  

using  System; 
using  System.Threading; 
using  System.Runtime.Remoting.Contexts; 
  
[Synchronization] 
public  class  AutoLock  : ContextBoundObject { 
  public  void  Demo() { 
    Console .Write ( "Start..." ); 
    Thread .Sleep (1000);           // We can't be preempted here  
    Console .WriteLine ( "end" );     // thanks to automatic locking!  
  }  
} 
  
public  class  Test  { 
  public  static  void  Main() { 
    AutoLock  safeInstance = new AutoLock (); 
    new Thread  (safeInstance.Demo).Start();     // Call the Demo  
    new Thread  (safeInstance.Demo).Start();     // method 3 times  
    safeInstance.Demo();                        // concurrently.  
  } 
} 

Start... end 
Start... end 
Start... end 

The CLR ensures that only one thread can execute code in safeInstance at a time. It does this by 
creating a single synchronizing object – and locking it around every call to each of safeInstance's 
methods or properties. The scope of the lock – in this case – the safeInstance object – is called a 
synchronization context. 

So, how does this work? A clue is in the Synchronization attribute's namespace: 
System.Runtime.Remoting.Contexts. A ContextBoundObject can be thought of as a "remote" 
object – meaning all method calls are intercepted. To make this interception possible, when we 
instantiate AutoLock , the CLR actually returns a proxy – an object with the same methods and 
properties of an AutoLock  object, which acts as an intermediary. It's via this intermediary that the 
automatic locking takes place. Overall, the interception adds around a microsecond to each method 
call. 

 

The locking is applied internally in the same way. You might expect that the following example will 
yield the same result as the last: 

Automatic synchronization cannot be used to protect static type members, nor classes not 
derived from ContextBoundObject (for instance, a Windows Form). 
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[ Synchronization ] 
public  class  AutoLock : ContextBoundObject { 
  public  void  Demo() { 
    Console .Write ( "Start..." ); 
    Thread .Sleep (1000); 
    Console .WriteLine ( "end" ); 
  } 
  
  public  void  Test() { 
    new Thread  (Demo).Start(); 
    new Thread  (Demo).Start(); 
    new Thread  (Demo).Start(); 
    Console .ReadLine(); 
  } 
  
  public  static  void  Main() { 
    new AutoLock().Test(); 
  } 
} 

(Notice that we've sneaked in a Console.ReadLine statement). Because only one thread can execute 
code at a time in an object of this class, the three new threads will remain blocked at the Demo 
method until the Test method finishes – which requires the ReadLine to complete. Hence we end up 
with the same result as before, but only after pressing the Enter key. This is a thread-safety hammer 
almost big enough to preclude any useful multithreading within a class! 

Furthermore, we haven't solved a problem described earlier: if AutoLock  were a collection class, for 
instance, we'd still require a lock around a statement such as the following, assuming it ran from 
another class: 

if  (safeInstance.Count > 0) safeInstance.RemoveAt (0) ; 

unless this code's class was itself a synchronized ContextBoundObject! 

A synchronization context can extend beyond the scope of a single object. By default, if a 
synchronized object is instantiated from within the code of another, both share the same context (in 
other words, one big lock!) This behavior can be changed by specifying an integer flag in 
Synchronization attribute's constructor, using one of the constants defined in the 
SynchronizationAttribute  class: 

Constant Meaning 

NOT_SUPPORTED Equivalent to not using the Synchronized attribute 

SUPPORTED Joins the existing synchronization context if instantiated from another 
synchronized object, otherwise remains unsynchronized 

REQUIRED 
(default) 

Joins the existing synchronization context if instantiated from another 
synchronized object, otherwise creates a new context 

REQUIRES_NEW Always creates a new synchronization context 

So if object of class SynchronizedA instantiates an object of class SynchronizedB, they'll be given 
separate synchronization contexts if SynchronizedB is declared as follows: 
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[ Synchronization  ( SynchronizationAttribute . REQUIRES_NEW)] 
public  class  SynchronizedB  : ContextBoundObject  { ... 

The bigger the scope of a synchronization context, the easier it is to manage, but the less the 
opportunity for useful concurrency. At the other end of the scale, separate synchronization contexts 
invite deadlocks. Here's an example: 

[ Synchronization ] 
public  class  Deadlock  : ContextBoundObject  { 
  public  DeadLock Other; 
  public  void  Demo() { Thread .Sleep (1000); Other.Hello(); } 
  void  Hello()       { Console .WriteLine ( "hello" );         } 
} 
  
public  class  Test  { 
  static  void  Main() { 
    Deadlock  dead1 = new Deadlock (); 
    Deadlock  dead2 = new Deadlock (); 
    dead1.Other = dead2; 
    dead2.Other = dead1; 
    new Thread  (dead1.Demo).Start(); 
    dead2.Demo(); 
  } 
} 

Because each instance of Deadlock is created within Test – an unsynchronized class – each instance 
will gets its own synchronization context, and hence, its own lock. When the two objects call upon 
each other, it doesn't take long for the deadlock to occur (one second, to be precise!) The problem 
would be particularly insidious if the Deadlock and Test classes were written by different 
programming teams. It may be unreasonable to expect those responsible for the Test class to be even 
aware of their transgression, let alone know how to go about resolving it. This is in contrast to explicit 
locks, where deadlocks are usually more obvious. 

Reentrancy 
A thread-safe method is sometimes called reentrant, because it can be preempted part way through its 
execution, and then called again on another thread without ill effect. In a general sense, the terms 
thread-safe and reentrant are considered either synonymous or closely related. 

Reentrancy, however, has another more sinister connotation in automatic locking regimes. If the 
Synchronization attribute is applied with the reentrant argument true: 

[ Synchronization ( true )] 

then the synchronization context's lock will be temporarily released when execution leaves the 
context. In the previous example, this would prevent the deadlock from occurring; obviously 
desirable. However, a side effect is that during this interim, any thread is free to call any method on 
the original object ("re-entering" the synchronization context) and unleashing the very complications 
of multithreading one is trying to avoid in the first place. This is the problem of reentrancy.  
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While reentrancy can be dangerous, there are sometimes few other options. For instance, suppose one 
was to implement multithreading internally within a synchronized class, by delegating the logic to 
workers running objects in separate contexts. These workers may be unreasonably hindered in 
communicating with each other or the original object without reentrancy. 

This highlights a fundamental weakness with automatic synchronization: the extensive scope over 
which locking is applied can actually manufacture difficulties that may never have otherwise arisen. 
These difficulties – deadlocking, reentrancy, and emasculated concurrency – can make manual 
locking more palatable in anything other than simple scenarios. 

 

Because [Synchronization(true)] is applied at a class-level, this attribute turns every out-of-
context method call made by the class into a Trojan for reentrancy. 
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PART 3 
USING THREADS 

Apartments and Windows Forms 
Apartment threading is an automatic thread-safety regime, closely allied to COM – Microsoft's 
legacy Component Object Model. While .NET largely breaks free of legacy threading models, there 
are times when it still crops up because of the need to interoperate with older APIs. Apartment 
threading is most relevant to Windows Forms, because much of Windows Forms uses or wraps the 
long-standing Win32 API – complete with its apartment heritage. 

An apartment is a logical "container" for threads. Apartments come in two sizes – "single" and 
"multi". A single-threaded apartment contains just one thread; multi-threaded apartments can contain 
any number of threads. The single-threaded model is the more common and interoperable of the two. 

As well as containing threads, apartments contain objects. When an object is created within an 
apartment, it stays there all its life, forever house-bound along with the resident thread(s). This is 
similar to an object being contained within a .NET synchronization context, except that a 
synchronization context does not own or contain threads. Any thread can call upon an object in any 
synchronization context – subject to waiting for the exclusive lock. But objects contained within an 
apartment can only be called upon by a thread within the apartment. 

Imagine a library, where each book represents an object. Borrowing is not permitted – books created 
in the library stay there for life. Furthermore, let's use a person to represent a thread.  

A synchronization context library allows any person to enter, as long as only one person enters at a 
time. Any more, and a queue forms outside the library. 

An apartment library has resident staff – a single librarian for a single-threaded library, and whole 
team for a multi-threaded library. No-one is allowed in other than members of staff – a patron 
wanting to perform research must signal a librarian, then ask the librarian to do the job! Signaling the 
librarian is called marshalling – the patron marshals the method call over to a member of staff (or, 
the member of staff!) Marshalling is automatic, and is implemented at the librarian-end via a message 
pump – in Windows Forms, this is the mechanism that constantly checks for keyboard and mouse 
events from the operating system. If messages arrive too quickly to be processed, they enter a 
message queue, so they can be processed in the order they arrive. 

Specifying an Apartment Model 
A .NET thread is automatically assigned an apartment upon entering apartment-savvy Win32 or 
legacy COM code. By default, it will be allocated a multi-threaded apartment, unless one requests a 
single-threaded apartment as follows: 

Thread  t = new Thread  (...); 
t.SetApartmentState ( ApartmentState .STA); 

One can also request that the main thread join a single-threaded apartment using the STAThread 
attribute on the main method: 
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class  Program  { 
  [ STAThread ] 
  static  void  Main() { 
  ... 

Apartments have no effect while executing pure .NET code. In other words, two threads with an 
apartment state of STA can simultaneously call the same method on the same object, and no 
automatic marshalling or locking will take place. Only when execution hits unmanaged code can they 
kick in. 

The types in the System.Windows.Forms namespace extensively call Win32 code designed to work 
in a single-threaded apartment. For this reason, a Windows Forms program should have have the 
[STAThread]  attribute on its main method, otherwise one of two things will occur upon reaching 
Win32 UI code: 

• it will marshal over to a single-threaded apartment 

• it will crash 

Control.Invoke 
In a multi-threaded Windows Forms application, it's illegal to call a method or property on a control 
from any thread other than the one that created it. All cross-thread calls must be explicitly marshalled 
to the thread that created the control (usually the main thread), using the Control.Invoke or 
Control.BeginInvoke method. One cannot rely on automatic marshalling because it takes place too 
late – only when execution gets well into unmanaged code, by which time plenty of internal .NET 
code may already have run on the "wrong" thread – code which is not thread-safe. 

An excellent solution to managing worker threads in Windows Forms and WPF applications is to use 
BackgroundWorker. This class wraps worker threads that need to report progress and completion, and 
automatically calls Control.Invoke or Dispatcher.Invoke as required. 

BackgroundWorker 
BackgroundWorker  is a helper class in the System.ComponentModel namespace for managing 
a worker thread. It provides the following features: 

• A "cancel" flag for signaling a worker to end without using Abort 

• A standard protocol for reporting progress, completion and cancellation 

• An implementation of IComponent allowing it be sited in the Visual Studio Designer 

• Exception handling on the worker thread  

• The ability to update Windows Forms and WPF controls in response to worker 

 

WPF is similar to Windows Forms in that elements can be accessed only from the thread that 
originally created them. The equivalent to Control.Invoke in WPF is Dispatcher.Invoke. 
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progress or completion. 

The last two features are particularly useful – it means you don't have to include a try/catch block 
in your worker method, and can update Windows Forms and WPF controls without needing to call 
Control.Invoke. 

BackgroundWorker  uses the thread-pool, which recycles threads to avoid recreating them for 
each new task. This means one should never call Abort on a BackgroundWorker  thread. 

Here are the minimum steps in using BackgroundWorker : 

• Instantiate BackgroundWorker , and handle the DoWork  event 

• Call RunWorkerAsync, optionally with an object argument. 

This then sets it in motion. Any argument passed to RunWorkerAsync will be forwarded to 
DoWork 's event handler, via the event argument's Argument property. Here's an example: 

class  Program  { 
  static  BackgroundWorker  bw = new BackgroundWorker (); 
  static  void  Main() { 
    bw. DoWork += bw_DoWork; 
    bw. RunWorkerAsync ( "Message to worker" );      
    Console .ReadLine(); 
  } 
  
  static  void  bw_DoWork ( object  sender, DoWorkEventArgs  e) { 
    // This is called on the worker thread  
    Console .WriteLine (e.Argument);        // writes "Message to worker"  
    // Perform time-consuming task...  
  } 

BackgroundWorker  also provides a RunWorkerCompleted event which fires after the DoWork  
event handler has done its job. Handling RunWorkerCompleted  is not mandatory, but one usually 
does so in order to query any exception that was thrown in DoWork. Furthermore, code within a 
RunWorkerCompleted event handler is able to update Windows Forms and WPF controls without 
explicit marshalling; code within the DoWork  event handler cannot. 

To add support for progress reporting: 

• Set the WorkerReportsProgress property to true 

• Periodically call ReportProgress from within the DoWork  event handler with a 
"percentage complete" value, and optionally, a user-state object 

• Handle the ProgressChanged event, quering its event argument's ProgressPercentage 
property 

Code in the ProgressChanged event handler is free to interact with UI controls just as with 
RunWorkerCompleted. This is typically where you will update a progress bar. 

To add support for cancellation: 

• Set the WorkerSupportsCancellation property to true 

• Periodically check the CancellationPending property from within the DoWork  event 
handler – if true, set the event argument's Cancel property true, and return.  (The worker 
can set Cancel true and exit without prompting via CancellationPending – if it decides 
the job's too difficult and it can't go on). 
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• Call CancelAsync to request cancellation. 

Here's an example that implements all the above features: 

using  System; 
using  System.Threading; 
using  System.ComponentModel; 
  
class  Program  { 
  static  BackgroundWorker  bw; 
  static  void  Main() { 
    bw = new BackgroundWorker (); 
    bw. WorkerReportsProgress = true ; 
    bw. WorkerSupportsCancellation = true ; 
    bw.DoWork += bw_DoWork; 
    bw. ProgressChanged += bw_ProgressChanged; 
    bw. RunWorkerCompleted += bw_RunWorkerCompleted; 
  
    bw.RunWorkerAsync ( "Hello to worker" ); 
     
    Console .WriteLine ( "Press Enter in next 5 seconds to cancel" ); 
    Console .ReadLine(); 
    if  (bw. IsBusy) bw. CancelAsync(); 
    Console .ReadLine(); 
  } 
  
  static  void  bw_DoWork ( object  sender, DoWorkEventArgs  e) { 
    for  ( int  i = 0; i <= 100; i += 20) { 
      if  (bw. CancellationPending) { 
        e. Cancel = true ; 
        return ; 
      } 
      bw. ReportProgress (i); 
      Thread .Sleep (1000); 
    } 
    e .Result = 123;    // This gets passed to RunWorkerCopmleted  
  } 
  
  static  void  bw_RunWorkerCompleted ( object  sender, 
  RunWorkerCompletedEventArgs  e) { 
    if  (e. Cancelled) 
      Console .WriteLine ( "You cancelled!" ); 
    else  if  (e. Error != null ) 
      Console .WriteLine ( "Worker exception: "  + e.Error.ToString()); 
    else  
      Console .WriteLine ( "Complete - "  + e. Result);  // from DoWork  
  } 
  
  static  void  bw_ProgressChanged ( object  sender, 
                                  ProgressChangedEventArgs  e) { 
    Console .WriteLine ( "Reached "  + e. ProgressPercentage + "%" ); 
  } 
} 
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Press Enter in the next 5 seconds to cancel 
Reached 0% 
Reached 20% 
Reached 40% 
Reached 60% 
Reached 80% 
Reached 100% 
Complete – 123 
 
Press Enter in the next 5 seconds to cancel 
Reached 0% 
Reached 20% 
Reached 40% 
 
You cancelled! 

Subclassing BackgroundWorker 

BackgroundWorker  is not sealed and provides a virtual OnDoWork  method, suggesting another 
pattern for its use. When writing a potentially long-running method, one could instead – or as well – 
write a version returning a subclassed BackgroundWorker , pre-configured to perform the job 
asynchronously. The consumer then only need handle the  RunWorkerCompleted and 
ProgressChanged events. For instance, suppose we wrote a time-consuming method called 
GetFinancialTotals: 

public  class  Client  { 
  Dictionary < string , int > GetFinancialTotals ( int  foo, int  bar) { ... } 
  ... 
} 

We could refactor it as follows: 

public  class  Client  { 
  public FinancialWorker  GetFinancialTotalsBackground ( int  foo, int  bar) { 
    return  new FinancialWorker (foo, bar); 
  } 
} 
  
public class  FinancialWorker  : BackgroundWorker { 
  public  Dictionary  < string , int > Result;   // We can add typed fields.  
  public  volatile  int  Foo, Bar;            // We could even expose them  
                                           // via p roperties with locks!  
  public  FinancialWorker() { 
    WorkerReportsProgress = true ; 
    WorkerSupportsCancellation = true ; 
  } 
  
  public  FinancialWorker ( int  foo, int  bar) : this () { 
    this .Foo = foo; this .Bar = bar; 
  } 
  



 

 41 

  protected  override  void  OnDoWork (DoWorkEventArgs e) { 
    ReportProgress (0, "Working hard on this report..." ); 

    Initialize financial report data 
  

    while  (! finished report ) { 
      if  (CancellationPending) { 
        e.Cancel = true ; 
        return ; 
      } 

      Perform another calculation step 

      ReportProgress ( percentCompleteCalc, "Getting there..." ); 
    }       
    ReportProgress (100, "Done!" ); 

    e.Result = Result = completed report data; 
  } 
} 

Whoever calls GetFinancialTotalsBackground then gets a FinancialWorker  – a wrapper to 
manage the background operation with real-world usability. It can report progress, be cancelled, and 
is compatible with Windows Forms without Control.Invoke. It's also exception-handled, and uses a 
standard protocol (in common with that of anyone else using BackgroundWorker !)  

This usage of BackgroundWorker  effectively deprecates the old "event-based asynchronous 
pattern". 

ReaderWriterLockSlim / ReaderWriterLock 
Quite often, instances of a type are thread-safe for concurrent read operations, but not for concurrent 
updates (nor for a concurrent read and update). This can also be true with resources such as a file. 
Although protecting instances of such types with a simple exclusive lock for all modes of access 
usually does the trick, it can unreasonably restrict concurrency if there are many readers and just 
occasional updates. An example of where this could occur is in a business application server, where 
commonly used data is cached for fast retrieval in static fields. The ReaderWriterLockSlim  class is 
designed to provide maximum-availability locking in just this scenario. 

With both classes, there are two basic kinds of lock: a read lock and a write lock. A write lock is 
universally exclusive, whereas a read lock is compatible with other read locks. 

So, a thread holding a write lock blocks all other threads trying to obtain a read or write lock (and 
vice versa). But if no thread holds a write lock, any number of threads may concurrently obtain a 
read lock. 

ReaderWriterLockSlim  defines the following methods for obtaining and releasing read/write locks: 

public void EnterReadLock(); 
public void ExitReadLock(); 
public void EnterWriteLock(); 
public void ExitWriteLock(); 

ReaderWriterLockSlim  is new to Framework 3.5 and is a replacement for the older “fat” 
ReaderWriterLock  class. The latter is similar in functionality, but is several times slower and 
has an inherent design fault in its mechanism for handling lock upgrades. 
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Additionally, there are “Try” versions of all EnterXXX  methods which accept timeout arguments in 
the style of Monitor.TryEnter  (timeouts can occur quite easily if the resource is heavily contended). 
ReaderWriterLock  provides similar methods, named AcquireXXX  and ReleaseXXX. These throw 
an ApplicationException if a timeout occurs rather than returning false. 

The following program demonstrates ReaderWriterLockSlim . Three threads continually enumerate 
a list, while two further threads append a random number to the list every second. A read lock 
protects the list readers and a write lock protects the list writers: 

class SlimDemo 
{ 
  static ReaderWriterLockSlim rw = new ReaderWriter LockSlim(); 
  static List<int> items = new List<int>(); 
  static Random rand = new Random(); 
 
  static void Main() 
  { 
    new Thread (Read).Start(); 
    new Thread (Read).Start(); 
    new Thread (Read).Start(); 
 
    new Thread (Write).Start ("A"); 
    new Thread (Write).Start ("B"); 
  } 
 
  static void Read() 
  { 
    while (true) 
    { 
      rw.EnterReadLock(); 
      foreach (int i in items) Thread.Sleep (10); 
      rw.ExitReadLock(); 
    } 
  } 
 
  static void Write (object threadID) 
  { 
    while (true) 
    {     
      int newNumber = GetRandNum (100); 
      rw.EnterWriteLock(); 
      items.Add (newNumber); 
      rw.ExitWriteLock(); 
      Console.WriteLine ("Thread " + threadID + " a dded " + newNumber); 
      Thread.Sleep (100); 
    } 
  } 
 
  static int GetRandNum (int max) { lock (rand) ret urn rand.Next (max); } 
} 

Here’s the result: 

Thread B added 61 
Thread A added 83 

In production code, you’d typically add try /finally  blocks to ensure locks were released if an 
exception was thrown. 
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Thread B added 55 
Thread A added 33 
... 

ReaderWriterLockSlim  allows more concurrent Read activity than would a simple lock. We can 
illustrate this by inserting the following line to the Write  method, at the start of the while loop: 

Console.WriteLine (rw.CurrentReadCount + " concurre nt readers"); 

This nearly always prints “3 concurrent readers” (the Read methods spend most their time inside the 
foreach loops). As well as CurrentReadCount, ReaderWriterLockSlim  provides the following 
properties for monitoring locks: 

public bool IsReadLockHeld            { get; } 
public bool IsUpgradeableReadLockHeld { get; } 
public bool IsWriteLockHeld           { get; } 
 
public int  WaitingReadCount          { get; } 
public int  WaitingUpgradeCount       { get; } 
public int  WaitingWriteCount         { get; } 
 
public int  RecursiveReadCount        { get; } 
public int  RecursiveUpgradeCount     { get; } 
public int  RecursiveWriteCount       { get; } 

Sometimes it’s useful to swap a read lock for a write lock in a single atomic operation. For instance, 
suppose you wanted to add an item to a list only if the item wasn’t already present. Ideally, you’d 
want to minimize the time spent holding the (exclusive) write lock, so you might proceed as follows: 

1. Obtain a read lock 

2. Test if the item is already present in the list, and if so, release the lock and return  

3. Release the read lock 

4. Obtain a write lock 

5. Add the item 

The problem is that another thread could sneak in and modify the list (adding the same item, for 
instance) between steps 3 and 4. ReaderWriterLockSlim  addresses this through a third kind of lock 
called an upgradeable lock. An upgradeable lock is like a read lock except that it can later be 
promoted to a write lock in an atomic operation. Here’s how you use it: 

1. Call EnterUpgradeableReadLock 

2. Perform read-based activities (e.g. test if item already present in list) 

3. Call EnterWriteLock  (this converts the upgradeable lock to a write lock) 

4. Perform write-based activities (e.g. add item to list) 

5. Call ExitWriteLock  (this converts the write lock back to an upgradeable lock) 

6. Perform any other read-based activities 

7. Call ExitUpgradeableReadLock 

From the caller’s perspective, it’s rather like nested or recursive locking. Functionally, though, in step 
3, ReaderWriterLockSlim  releases your read-lock and obtains a fresh write-lock, atomically. 
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There’s another important difference between upgradeable locks and read locks. While an upgradable 
lock can coexist with any number of read locks, only one upgradeable lock can itself be taken out at a 
time. This prevents conversion deadlocks by serializing competing conversions—just as update locks 
do in SQL Server: 

SQL Server ReaderWriterLockSlim  

Share lock Read lock 

Exclusive lock Write lock 

Update lock Upgradeable lock 

We can demonstrate an upgradeable lock by by changing the Write  method in the preceding example 
such that it adds a number to list only if not already present: 

while (true) 
{ 
  int newNumber = GetRandNum (100); 
  rw.EnterUpgradeableReadLock(); 
  if (!items.Contains (newNumber)) 
  { 
    rw.EnterWriteLock(); 
    items.Add (newNumber); 
    rw.ExitWriteLock(); 
    Console.WriteLine ("Thread " + threadID + " add ed " + newNumber); 
  } 
  rw.ExitUpgradeableReadLock(); 
  Thread.Sleep (100); 
} 

Lock recursion 
Ordinarily, nested or recursive locking is prohibited with ReaderWriterLockSlim. Hence, the 
following throws an exception: 

var rw = new ReaderWriterLockSlim(); 
rw.EnterReadLock(); 
rw.EnterReadLock(); 
rw.ExitReadLock(); 
rw.ExitReadLock(); 

It runs without error, however, if you construct ReaderWriterLockSlim  as follows: 

var rw = new ReaderWriterLockSlim ( LockRecursionPolicy.SupportsRecursion); 

This ensures that recursive locking can happen only if you plan for it. Recursive locking can bring 
undesired complexity because it’s possible to acquire more than one kind of lock: 

rw.EnterWriteLock(); 
rw.EnterReadLock(); 
Console.WriteLine (rw.IsReadLockHeld);     // True 
Console.WriteLine (rw.IsWriteLockHeld);    // True 

ReaderWriterLock  can also do lock conversions—but unreliably because it doesn’t support 
the concept of upgradeable locks. This is why the designers of ReaderWriterLockSlim  had to 
start afresh with a new class. 
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rw.ExitReadLock(); 
rw.ExitWriteLock(); 

The basic rule is that once you’ve acquired a lock, subsequent recursive locks can less, but not 
greater, on the following scale: 

        Read Lock  -->  Upgradeable Lock  -->  Write Lock 

A request to promote an upgradeable lock to a write lock, however, is always legal. 

Thread Pooling 
If your application has lots of threads that spend most of their time blocked on a Wait Handle, you 
can reduce the resource burden via thread pooling. A thread pool economizes by coalescing many 
Wait Handles onto a few threads. 

To use the thread pool, you register a Wait Handle along with a delegate to be executed when the 
Wait Handle is signaled. This is done by calling ThreadPool.RegisterWaitForSingleObject, such in 
this example: 

class  Test  { 
  static  ManualResetEvent  starter = new ManualResetEvent  ( false ); 
  
  public  static  void  Main() { 
    ThreadPool . RegisterWaitForSingleObject (starter, Go, 
                                            "hello" , -1, true ); 
    Thread .Sleep (5000); 
    Console .WriteLine ( "Signaling worker..." ); 
    starter.Set(); 
    Console .ReadLine(); 
  } 
  
  public  static  void  Go ( object data, bool timedOut) { 
    Console .WriteLine ( "Started "  + data); 
    // Perform task...  
  } 
} 

(5 second delay) 
Signaling worker... 
Started hello 

In addition to the Wait Handle and delegate, RegisterWaitForSingleObject accepts a "black box" 
object which it passes to your delegate method (rather like with a ParameterizedThreadStart), as well 
as a timeout in milliseconds (-1 meaning no timeout) and a boolean flag indicating if the request is 
one-off rather than recurring.  

All pooled threads are background threads, meaning they terminate automatically when the 
application's foreground thread(s) end. However if one wanted to wait until any important jobs 
running on pooled threads completed before exiting an application, calling Join on the threads would 
not be an option, since pooled threads never finish! The idea is that they are instead recycled, and end 
only when the parent process terminates. So in order to know when a job running on a pooled thread 
has finished, one must signal – for instance, with another Wait Handle. 



 

 46 

You can also use the thread pool without a Wait Handle by calling the QueueUserWorkItem  
method – specifying a delegate for immediate execution. You don't then get the saving of sharing 
threads amongst multiple jobs, but do get another benefit: the thread pool keeps a lid on the total 
number of threads (25, by default), automatically enqueuing tasks when the job count goes above this. 
It's rather like an application-wide producer-consumer queue with 25 consumers! In the following 
example, 100 jobs are enqueued to the thread pool, of which 25 execute at a time. The main thread 
then waits until they're all complete using Wait and Pulse: 

class  Test  { 
  static  object  workerLocker = new object  (); 
  static  int  runningWorkers = 100; 
  
  public  static  void  Main() { 
    for  ( int  i = 0; i < runningWorkers; i++) { 
      ThreadPool . QueueUserWorkItem (Go, i); 
    } 
    Console .WriteLine ( "Waiting for threads to complete..." ); 
    lock  (workerLocker) { 
      while  (runningWorkers > 0) Monitor .Wait (workerLocker); 
    } 
    Console .WriteLine ( "Complete!" ); 
    Console .ReadLine(); 
  } 
  
  public  static  void  Go ( object  instance) { 
    Console .WriteLine ( "Started: "  + instance); 
    Thread .Sleep (1000); 
    Console .WriteLine ( "Ended: "  + instance); 
    lock  (workerLocker) { 
      runningWorkers--; Monitor .Pulse (workerLocker); 
    } 
  } 
} 

In order to pass more than a single object to the target method, one can either define a custom object 
with all the required properties, or call via an anonmymous method. For instance, if the Go method 
accepted two integer parameters, it could be started as follows: 

ThreadPool .QueueUserWorkItem ( delegate  ( object  notUsed) { Go (23,34); }); 

Another way into the thread pool is via asynchronous delegates. 

Asynchronous Delegates 
In Part 1 we described how to pass data to a thread, using ParameterizedThreadStart. Sometimes you 
need to go the other way, and get return values back from a thread when it finishes executing. 
Asynchronous delegates offer a convenient mechanism for this, allowing any number of typed 
arguments to be passed in both directions. Furthermore, unhandled exceptions on asynchronous 
delegates are conveniently re-thrown on the original thread, and so don't need explicit handling. 
Asynchronous delegates also provide another way into the thread pool. 

Calling Abort  on a pooled thread is Bad Idea. The threads need to be recycled for the life of 
the application domain. 
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The price you must pay for all this is in following its asynchronous model. To see what this means, 
we'll first discuss the more usual, synchronous, model of programming. Let's say we want to compare 
two web pages. We could achieve this by downloading each page in sequence, then comparing their 
output as follows: 

static  void  ComparePages() { 
  WebClient wc = new WebClient (); 
  string  s1 = wc.DownloadString ( "http://www.oreilly.com" ); 
  string  s2 = wc.DownloadString ( "http://oreilly.com" ); 
  Console .WriteLine (s1 == s2 ? "Same"  : "Different" ); 
} 

Of course it would be faster if both pages downloaded at once. One way to view the problem is to 
blame DownloadString for blocking the calling method while the page is downloading. It would be 
nice if we could call DownloadString in a non-blocking asynchronous fashion, in other words: 

1. We tell DownloadString to start executing. 

2. We perform other tasks while it's working, such as downloading another page. 

3. We ask DownloadString for its results. 

The third step is what makes asynchronous delegates useful. The caller rendezvous with the worker to 
get results and to allow any exception to be re-thrown. Without this step, we have normal 
multithreading. While it's possible to use asynchronous delegates without the rendezvous, you gain 
little over calling ThreadPool.QueueWorkerItem or using BackgroundWorker. 

Here's how we can use asynchronous delegates to download two web pages, while simultaneously 
performing a calculation: 

delegate  string  DownloadString  ( string  uri); 
  
static  void  ComparePages() { 
  
  // Instantiate delegates with DownloadString's si gnature: 
  DownloadString  download1 = new WebClient ().DownloadString; 
  DownloadString  download2 = new WebClient ().DownloadString; 
   
  // Start the downloads: 
  IAsyncResult  cookie1 = download1.BeginInvoke (uri1, null , null ); 
  IAsyncResult  cookie2 = download2.BeginInvoke (uri2, null , null ); 
   
  // Perform some random calculation: 
  double  seed = 1.23; 
  for  ( int  i = 0; i < 1000000; i++) seed = Math .Sqrt (seed + 1000); 
   
  // Get the results of the downloads, waiting for completion if necessary. 
  // Here's where any exceptions will be thrown: 
  string  s1 = download1.EndInvoke (cookie1); 
  string  s2 = download2.EndInvoke (cookie2); 
   
  Console .WriteLine (s1 == s2 ? "Same"  : "Different" ); 
} 

The WebClient class actually offers a built-in method called DownloadStringAsync which 
provides asynchronous-like functionality. For now, we'll ignore this and focus on the 
mechanism by which any method can be called asynchronously. 
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We start by declaring and instantiating delegates for methods we want to run asynchronously. In this 
example, we need two delegates so that each can reference a separate WebClient object (WebClient 
does not permit concurrent access—if it did, we could use a single delegate throughout). 

We then call BeginInvoke. This begins execution while immediately returning control to the caller. 
In accordance with our delegate, we must pass a string to BeginInvoke (the compiler enforces this, 
by manufacturing typed BeginInvoke and EndInvoke methods on the delegate type). 

BeginInvoke requires two further arguments—an optional callback and data object; these can be left 
null as they're usually not required. BeginInvoke returns an IASynchResult object which acts as a 
cookie for calling EndInvoke. The IASynchResult object also has the property IsCompleted which 
can be used to check on progress. 

We then call EndInvoke on the delegates, as their results are needed. EndInvoke waits, if necessary, 
until its method finishes, then returns the method's return value as specified in the delegate (string, in 
this case). A nice feature of EndInvoke is that if the DownloadString method had any ref or out 
parameters, these would be added into EndInvoke's signature, allowing multiple values to be sent 
back by to the caller. 

If at any point during an asynchronous method's execution an unhandled exception is encountered, it's 
re-thrown on the caller's thread upon calling EndInvoke. This provides a tidy mechanism for 
marshaling exceptions back to the caller. 

Asynchronous Methods 
Some types in the .NET Framework offer asynchronous versions of their methods, with names 
starting with "Begin" and "End". These are called asynchronous methods and have signatures similar 
to those of asynchronous delegates, but exist to solve a much harder problem: to allow more 
concurrent activities than you have threads. A web or TCP sockets server, for instance, can process 
several hundred concurrent requests on just a handful of pooled threads if written using 
NetworkStream.BeginRead and NetworkStream.BeginWrite.  

Unless you're writing a high concurrency application, however, you should avoid asynchronous 
methods for a number of reasons: 

• Unlike asynchronous delegates, asynchronous methods may not actually execute in 
parallel with the caller 

• The benefits of asynchronous methods erodes or disappears if you fail to follow the 
pattern meticulously 

• Things can get complex pretty quickly when you do follow the pattern correctly 

If you're simply after parallel execution, you're better off calling the synchronous version of the 
method (e.g. NetworkStream.Read) via an asynchronous delegate. Another option is to use 
ThreadPool.QueueUserWorkItem or BackgroundWorker—or simply create a new thread. 
Chapter 20 of C# 3.0 in a Nutshell explains asynchronous methods in detail. 

If the method you're calling asynchronously has no return value, you are still (technically) 
obliged to call EndInvoke. In a practical sense this is open to interpretation; the MSDN is 
contradictory on this issue. If you choose not to call EndInvoke, however, you'll need to 
consider exception handling on the worker method. 
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Asynchronous Events 
Another pattern exists whereby types can provide asynchronous versions of their methods. This is 
called the "event-based asynchronous pattern" and is distinguished by a method whose name ends 
with "Async", and a corresponding event whose name ends in "Completed". The WebClient class 
employs this pattern in its DownloadStringAsync method. To use it, you first handle the 
"Completed" event (e.g. DownloadStringCompleted) and then call the "Async" method (e.g. 
DownloadStringAsync). When the method finishes, it calls your event handler. Unfortunately, 
WebClient's implementation is flawed: methods such as DownloadStringAsync block the caller for 
a portion of the download time. 

The event-based pattern also offers events for progress reporting and cancellation, designed to be 
friendly with Windows applications that update forms and controls. If you need these features in a 
type that doesn't support the event-based asynchronous model (or doesn't support it correctly!) you 
don't have to take on the burden of implementing the pattern yourself, however (and you wouldn't 
want to!) All of this can be achieved more simply with the BackgroundWorker helper class. 

Timers 
The easiest way to execute a method periodically is using a timer – such as the Timer  class provided 
in the System.Threading namespace. The threading timer takes advantage of the thread pool, 
allowing many timers to be created without the overhead of many threads. Timer is a fairly simple 
class, with a constructor and just two methods (a delight for minimalists, as well as book authors!) 

public  sealed  class  Timer  : MarshalByRefObject , IDisposable  
{ 

  public  Timer ( TimerCallback  tick, object  state, 1st, subsequent); 

  public bool  Change ( 1st, subsequent);   // To change the interval  
  public void  Dispose();                // To kill the timer  
} 

1st = time to the first tick in milliseconds or a Time Span 

subsequent = subsequent intervals in milliseconds or a TimeSp an 
 (use Timeout.Infinite for a one-off callback) 

In the following example, a timer calls the Tick  method which writes "tick..." after 5 seconds have 
elapsed, then every second after that – until the user presses Enter: 

using  System; 
using  System.Threading; 
  
class  Program  { 
  static  void  Main() { 
    Timer  tmr = new Timer  (Tick, "tick..." , 5000, 1000); 
    Console .ReadLine(); 
    tmr.Dispose();         // End the timer  
  } 
  
  static  void  Tick ( object  data) { 
    // This runs on a pooled thread  
    Console .WriteLine (data);          // Writes "tick..."  
  } 
} 

The .NET framework provides another timer class of the same name in the System.Timers 
namespace. This simply wraps System.Threading.Timer, providing additional convenience while 
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using the same thread pool – and the identical underlying engine. Here's a summary of its added 
features: 

• A Component implementation, allowing it to be sited in the Visual Studio Designer 

• An Interval  property instead of a Change method 

• An Elapsed event instead of a callback delegate 

• An Enabled property to start and pause the timer (its default value being false) 

• Start and Stop methods in case you're confused by Enabled 

• an AutoReset flag for indicating a recurring event (default value true)  

Here's an example: 

using  System; 
using  System.Timers;   // Timers namespace rather than Threading  
  
class  SystemTimer  { 
  static  void  Main() { 
    Timer  tmr = new Timer ();       // Doesn't require any args  
    tmr. Interval = 500; 
    tmr. Elapsed += tmr_Elapsed;    // Uses an event instead of a delegate  
    tmr. Start();                   // Start the timer  
    Console .ReadLine(); 
    tmr. Stop();                    // Pause the timer  
    Console .ReadLine(); 
    tmr. Start();                   // Resume the timer  
    Console .ReadLine(); 
    tmr. Dispose();                 // Permanently stop the timer  
  } 
  
  static  void  tmr_Elapsed ( object  sender, EventArgs  e) { 
    Console .WriteLine ( "Tick" ); 
  } 
} 

The .NET framework provides yet a third timer – in the System.Windows.Forms namespace. While 
similar to System.Timers.Timer in its interface, it's radically different in the functional sense. A 
Windows Forms timer does not use the thread pool, instead firing its "Tick" event always on the same 
thread that originally created the timer. Assuming this is the main thread – also responsible for 
instantiating all the forms and controls in the Windows Forms application – the timer's event handler 
is then able to interact with the forms and controls without violating thread-safety – or the impositions 
of apartment-threading. Control.Invoke is not required. The Windows timer is, in effect, a single-
threaded timer. 

Windows Forms and WPF timers are intended for jobs that may involve updating the user interface 
and which execute quickly. Quick execution is important because the Tick  event is called on the main 
thread – which if tied up, will make the user interface unresponsive. 

There's an equivalent single-threaded timer for WPF, called DispatcherTimer. 



 

 51 

Local Storage 
Each thread gets a data store isolated from all other threads. This is useful for storing "out-of-band" 
data – that which supports the execution path's infrastructure, such as messaging, transaction or 
security tokens. Passing such data around via method parameters would be extremely clumsy and 
would alienate all but your own methods; storing such information in static fields would mean 
sharing it between all threads. 

Thread.GetData reads from a thread's isolated data store; Thread.SetData writes to it. Both 
methods require a LocalDataStoreSlot object to identify the slot – this is just a wrapper for a string 
that names the slot – the same one can be used across all threads and they'll still get separate values. 
For example: 

class  ... { 
  // The same LocalDataStoreSlot object can be used 
  // across all threads.  
  LocalDataStoreSlot secSlot = Thread .GetNamedDataSlot 
                               ( "securityLevel" ); 
  
  // This property has a separate value on each threa d.  
  int  SecurityLevel { 
    get  { 
      object  data = Thread . GetData (secSlot); 
      return  data == null  ? 0 : ( int ) data; // null == uninitialized  
    } 
    set  { 
      Thread . SetData (secSlot, value); 
    } 
  } 
  ... 

Thread.FreeNamedDataSlot will release a given data slot across all threads – but only once all 
LocalDataStoreSlot objects of the same name have dropped out of scope and been garbage 
collected. This ensures threads don't get data slots pulled out from under their feet – as long as they 
keep a reference to the appropriate LocalDataStoreSlot object for as long as it's in use. 
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PART 4 
ADVANCED TOPICS 

Non-Blocking Synchronization 
Earlier, we said that the need for synchronization arises even the simple case of assigning or 
incrementing a field. Although locking can always satisfy this need, a contended lock means that a 
thread must block, suffering the overhead and latency of being temporarily descheduled, which can 
be undesirable in highly concurrent and performance-critical scenarios. The .NET Framework’s 
nonblocking synchronization constructs can perform simple operations without ever blocking, 
pausing, or waiting. 

The non-blocking approaches also work across multiple processes. An example of where this might 
be useful is in reading and writing process-shared memory.  

Memory Barriers and Volatility  
Consider the following example:  

class Foo 
{ 
  int _answer; 
  bool _complete; 
 
  void A() 
  { 
    _answer = 123; 
    _complete = true; 
  } 
 
  void B() 
  { 
    if (_complete) Console.WriteLine (_answer); 
  } 
} 

If methods A and B ran concurrently on different threads, might it be possible to for B to write “0”? 
The answer is yes—for the following reasons:  

• The compiler, CLR or CPU may re-order your program's instructions to improve 
efficiency. 

• The compiler, CLR or CPU may introduce caching optimizations such that assignments to 
variables won't be visible to other threads right away. 

C# and the runtime are very careful to ensure that such optimizations don’t break ordinary single-
threaded code—or multithreaded code that makes proper use of locks. Outside of these scenarios, you 

Writing nonblocking or lock-free multithreaded code properly is tricky! Memory barriers, in 
particular, are easy to get wrong (the volatile keyword is even easier to get wrong). Think 
carefully whether you really need the performance benefits before dismissing ordinary locks.  
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must explicitly defeat these optimizations by creating memory barriers (also called memory fences) to 
limit the effects of instruction reordering and read/write caching.  

Full fences  

The simplest kind of memory barrier is a full memory barrier (full fence) which prevents any kind of 
instruction reordering or caching around that fence. Calling Thread.MemoryBarrier  generates a full 
fence; we can fix our example by applying four full fences as follows:  

class Foo 
{ 
  int _answer; 
  bool _complete; 
 
  void A() 
  { 
    _answer = 123; 
    Thread.MemoryBarrier();    // Barrier 1 
    _complete = true; 
    Thread.MemoryBarrier();    // Barrier 2 
  } 
 
  void B() 
  { 
    Thread.MemoryBarrier();    // Barrier 3 
    if (_complete) 
    { 
      Thread.MemoryBarrier();       // Barrier 4 
      Console.WriteLine (_answer); 
    } 
  } 
} 

Barriers 1 and 4 prevent this example from writing “0”. Barriers 2 and 3 provide a freshness 
guarantee: they ensure that if B ran after A, reading _complete would evaluate to true.  

A full fence takes a few tens of nanoseconds.  

You don’t necessarily need a full fence with every individual read or write. If we had three answer 
fields, our example would still need only four fences:  

The following implicitly generate full fences:  
 
▪ C#'s lock statement (Monitor.Enter /Monitor.Exit ) 
▪ All methods on the Interlocked class (we’ll cover these soon) 
▪ Asynchronous callbacks that use the thread pool — these include asynchronous delegates, 
APM callbacks (and Framework 4.0's Task continuations) 
▪ Setting and waiting on a signaling construct 
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class Foo 
{ 
  int _answer1, _answer2, _answer3; 
  bool _complete; 
 
  void A() 
  { 
    _answer1 = 1; _answer2 = 2; _answer3 = 3; 
    Thread.MemoryBarrier(); 
    _complete = true; 
    Thread.MemoryBarrier(); 
  } 
 
  void B() 
  { 
    Thread.MemoryBarrier(); 
    if (_complete) 
    { 
      Thread.MemoryBarrier(); 
      Console.WriteLine (_answer1 + _answer2 + _ans wer3); 
    } 
  } 
} 

A good approach is start by putting memory barriers before and after every instruction that reads or 
writes a shared field, and then strip away the ones that you don’t need. If you’re uncertain of any, 
leave them in. Or better: switch back to using locks!  

Do we Really Need Locks & Barriers?  
 
Working with shared writable fields without locks or fences is asking for trouble. There’s a lot 
of misleading information on this topic—including the MSDN documentation which states that 
MemoryBarrier  is required only on multiprocessor systems with weak memory ordering, such 
as a system employing multiple Itanium processors. We can demonstrate that memory barriers 
are important on ordinary Intel Core-2 and Pentium processors with the following short 
program. You’ll need to run it with optimizations enabled and without a debugger (in Visual 
Studio, select “Release Mode” in the solution’s configuration manager, and then start without 
debugging):  
 
static void Main() 
{ 
  bool complete = false;  
  var t = new Thread (() => 
  { 
    bool toggle = false; 
    while (!complete) toggle = !toggle; 
  }); 
  t.Start(); 
  Thread.Sleep (1000); 
  complete = true; 
  t.Join();        // Blocks indefinitely 
} 

 
This program never terminates! Inserting a call to Thread.MemoryBarrier  inside the while-
loop (or locking around reading complete) fixes the error.  
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The volatile keyword  

Another (more advanced) way to solve this problem is to apply the volatile keyword to the _complete 
field:  

volatile bool _complete; 

The volatile keyword instructs the compiler to generate an acquire-fence on every read from that 
field, and a release-fence on every write to that field. An acquire-fence prevents other reads/writes 
from being moved before the fence; a release-fence prevents other reads/writes from being moved 
after the fence. These “half-fences” are faster than full fences because they give the runtime and 
hardware more scope for optimization.  

The effect of applying volatile to fields can be summarized as follows:  

First Instruction  Second Instruction Can they be swapped? 
Read Read No 
Read Write No 
Write Write No 
Write Read Yes! 

Notice that applying volatile doesn’t prevent a write followed by a read from being swapped, and this 
can create brain-teasers. Joe Duffy illustrates the problem well with the following example: if Test1 
and Test2 run simultaneously on different threads, it’s possible for a and b to both end up with a value 
of 0 (despite the use of volatile on both x and y):  

class IfYouThinkYouUnderstandVolatile 
{ 
  volatile int x, y; 
  
  void Test1()        // Executed on one thread 
  { 
    x = 1;            // Volatile write (release-fe nce) 
    int a = y;        // Volatile read (acquire-fen ce) 
    ... 
  } 
  
  void Test2()        // Executed on another thread  
  { 
    y = 1;            // Volatile write (release-fe nce) 
    int b = x;        // Volatile read (acquire-fen ce) 
    ... 
  } 
} 

As it happens, X86 processors always apply acquire-fences to reads and release-fences to 
writes—whether or not you use the volatile keyword, so this keyword has no effect on the X86 
processor itself. However, volatile does has an effect on optimizations performed by the 
compiler and CLR. This means that you cannot be more relaxed by virtue of your clients 
running X86 processors. 
 
(And even if you do use volatile, you should still maintain a healthy sense of anxiety, as we’ll 
see shortly!) 
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This presents a strong case for avoiding volatile: even if you understand the subtlety in this example, 
will other developers working on your code also understand it? A full fence between each of the two 
assignments in Test1 and Test2 (a or lock) solves the problem.  

The volatile keyword is not supported with pass-by-reference arguments or captured local variables: 
in these cases you must use the VolatileRead and VolatileWrite  methods.  

VolatileRead and VolatileWrite  

The static VolatileRead and VolatileWrite  methods in the Thread class read/write a variable while 
enforcing (technically, a superset of) the guarantees made by the volatile keyword. Their 
implementations are relatively inefficient, though, in that they actually generate full fences. Here are 
their complete implementations for the integer type:  

public static void VolatileWrite (ref int address, int value) 
{ 
  MemoryBarrier(); address = value; 
} 
 
public static int VolatileRead (ref int address) 
{ 
  int num = address; MemoryBarrier(); return num; 
} 

You can see from this that if you call VolatileWrite  followed by VolatileRead, no barrier is 
generated in the middle: this enables the same brain-teasing scenario that we saw earlier.  

Memory barriers and locking  

As we said earlier, Monitor.Enter  and Monitor.Exit  both generate full fences. So, if we ignore a 
lock’s mutual exclusion guarantee, we could say that this:  

lock (someField) { … } 

is equivalent to:  

Thread.MemoryBarrier(); { … } Thread.MemoryBarrier( ); 

Atomicity and Interlocked  
Use of memory barriers is not always enough when reading or writing fields in lock-free code. 
Operations on 64-bit fields, increments and decrements require the heavier approach of using the 
Interlocked helper class. Interlocked also provides the Exchange and CompareExchange methods, 
the latter enabling lock-free read-modify-write operations, with a little additional coding.  

A statement is intrinsically atomic if it executes as a single indivisible instruction on the underlying 
processor. Strict atomicity precludes any possibility of preemption. A simple read or write on a field 
of 32 bits or less is always atomic. Operations on 64-bit fields are guaranteed to be atomic only in a 

The MSDN documentation states that use of the volatile keyword ensures that the most up-to-
date value is present in the field at all times. This is incorrect, since as we’ve seen, a write 
followed by a read can be reordered.  
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64-bit runtime environment, and statements that combine more than one read/write operation are 
never atomic:  

class Atomicity 
{ 
  static int _x, _y; 
  static long _z; 
 
  static void Test() 
  { 
    long myLocal; 
    _x = 3;             // Atomic 
    _z = 3;             // Nonatomic on 32-bit envi rons (_z is 64 bits) 
    myLocal = _z;       // Nonatomic on 32-bit envi rons (_z is 64 bits) 
    _y += _x;           // Nonatomic (read AND writ e operation) 
    _x++;               // Nonatomic (read AND writ e operation) 
  } 
} 

Reading and writing 64-bit fields is nonatomic on 32-bit environments because it requires two 
separate instructions; one for each 32-bit memory location. So, if thread x reads a 64-bit value while 
thread y is updating it, thread x may end up with a bitwise combination of the old and new values (a 
torn read).  

The compiler implements unary operators of the kind x++ by reading a variable, processing it, and 
then writing it back. Consider the following class:  

class ThreadUnsafe 
{ 
  static int _x = 1000; 
  static void Go() { for (int i = 0; i < 100; i++) _x--; } 
} 

Putting aside the issue of memory barriers, you might expect that if 10 threads concurrently run Go, 
_x would end up as 0. However, this is not guaranteed, because a race condition is possible whereby 
one thread preempts another in between retrieving _x’s current value, decrementing it, and writing it 
back (resulting in an out-of-date value being written).  

Of course, you can address these issues by wrapping the nonatomic operations in a lock statement. 
Locking, in fact, simulates atomicity if consistently applied. The Interlocked class, however, 
provides an easier and faster solution for such simple operations:  

class Program 
{ 
  static long _sum; 
  
  static void Main() 
  {                                                             // _sum 
    // Simple increment/decrement operations: 
    Interlocked.Increment (ref _sum);                              // 1 
    Interlocked.Decrement (ref _sum);                              // 0 
 
    // Add/subtract a value: 
    Interlocked.Add (ref _sum, 3);                                 // 3 
 
    // Read a 64-bit field: 
    Console.WriteLine (Interlocked.Read (ref _sum)) ;               // 3 
 
    // Write a 64-bit field while reading previous value: 
    // (This prints "3" while updating _sum to 10) 
    Console.WriteLine (Interlocked.Exchange (ref _s um, 10));       // 10 
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    // Update a field only if it matches a certain value (10): 
    Console.WriteLine (Interlocked.CompareExchange (ref _sum, 
                                                    123, 10);      // 123 
  } 
} 

Interlocked’s mathematical operations are restricted to Increment, Decrement and Add. If you 
want to multiply—or perform any other calculation—you can do so in lock-free style by using the 
CompareExchange method (typically in conjunction with spin-waiting; this is an advanced concept).  

Interlocked works by making its need for atomicity known to the operating system and virtual 
machine.  

Wait and Pulse 
Earlier we discussed Event Wait Handles – a simple signaling mechanism where a thread blocks until 
it receives notification from another. 

A more powerful signaling construct is provided by the Monitor  class, via two static methods – Wait  
and Pulse. The principle is that you write the signaling logic yourself using custom flags and fields 
(in conjunction with lock statements), then introduce Wait  and Pulse commands to mitigate CPU 
spinning. This advantage of this low-level approach is that with just Wait , Pulse and the lock 
statement, you can achieve the functionality of AutoResetEvent, ManualResetEvent and Semaphore, 
as well as WaitHandle' s static methods WaitAll  and WaitAny . Furthermore, Wait  and Pulse can be 
amenable in situations where all of the Wait Handles are parsimoniously challenged. 

A problem with Wait  and Pulse is their poor documentation – particularly with regard their reason-
to-be. And to make matters worse, the Wait  and Pulse methods have a peculiar aversion to dabblers: 
if you call on them without a full understanding, they will know – and will delight in seeking you out 
and tormenting you! Fortunately, there is a simple pattern one can follow that provides a fail-safe 
solution in every case. 

Wait and Pulse Defined 
The purpose of Wait  and Pulse is to provide a simple signaling mechanism: Wait  blocks until it 
receives notification from another thread; Pulse provides that notification. 

Wait  must execute before Pulse in order for the signal to work. If Pulse executes first, its pulse is 
lost, and the late waiter must wait for a fresh pulse, or remain forever blocked. This differs from the 

All of Interlocked’s methods generate a full fence. Therefore, fields that you access via 
Interlocked don’t need additional fences—unless they’re accessed in other places in your 
program without Interlocked or a lock.  

Interlocked’s methods have a typical overhead of 50ns—half that of an uncontended lock. 
Further, they can never suffer the additional cost of context switching due to blocking. The flip 
side is that using Interlocked within a loop with many iterations can be less efficient that 
obtaining a single lock around the loop (although Interlocked enables greater concurrency).  
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behavior of an AutoResetEvent, where its Set method has a "latching" effect and so is effective if 
called before WaitOne. 

One must specify a synchronizing object when calling Wait  or Pulse. If two threads use the same 
object, then they are able to signal each other. The synchronizing object must be locked prior to 
calling Wait or Pulse. 

For example, if x has this declaration: 

class  Test  { 
  // Any reference-type object will work as a synchro nizing object  
  object  x = new object (); 
} 

then the following code blocks upon entering Monitor.Wait : 

lock  (x) Monitor .Wait (x); 

The following code (if executed later on another thread) releases the blocked thread: 

lock  (x) Monitor .Pulse (x); 

Lock toggling 

To make this work, Monitor.Wait  temporarily releases, or toggles the underlying lock while waiting, 
so another thread (such as the one performing the Pulse) can obtain it. The Wait  method can be 
thought of as expanding into the following pseudo-code: 

Monitor .Exit (x);             // Release the lock  

wait for a pulse on x 
Monitor .Enter (x);            // Regain the lock  

Hence a Wait  can block twice: once in waiting for a pulse, and again in regaining the exclusive lock. 
This also means that Pulse by itself does not fully unblock a waiter: only when the pulsing thread 
exits its lock statement can the waiter actually proceed. 

Wait's  lock toggling is effective regardless of the lock nesting level. If Wait  is called inside two 
nested lock statements: 

lock  (x) 
  lock  (x) 
    Monitor .Wait (x); 

then Wait  logically expands into the following: 

Monitor .Exit (x); Monitor .Exit (x);    // Exit twice to release the lock  

wait for a pulse on x 
Monitor .Enter (x); Monitor .Enter (x);  // Restore previous nesting level  

Consistent with normal locking semantics, only the first call to Monitor.Enter  affords a blocking 
opportunity. 

Why the lock? 

Why have Wait  and Pulse been designed such that they will only work within a lock? The primary 
reason is so that Wait  can be called conditionally – without compromising thread-safety. To take a 
simple example, suppose we want to Wait  only if a boolean field called available is false. The 
following code is thread-safe: 
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lock  (x) { 
  if  (!available) Monitor .Wait (x); 
  available = false ; 
} 

Several threads could run this concurrently, and none could preempt another in between checking the 
available field and calling Monitor.Wait . The two statements are effectively atomic. A 
corresponding notifier would be similarly thread-safe: 

lock  (x) 
  if  (!available) { 
    available = true ; 
    Monitor .Pulse (x); 
  } 

Specifying a timeout 

A timeout can be specified when calling Wait , either in milliseconds or as a TimeSpan. Wait  then 
returns false if it gave up because of a timeout. The timeout applies only to the "waiting" phase 
(waiting for a pulse): a timed out Wait  will still subsequently block in order to re-acquire the lock, no 
matter how long it takes. Here's an example: 

lock  (x) { 
  if  (! Monitor .Wait (x, TimeSpan .FromSeconds (10))) 
    Console .WriteLine ( "Couldn't wait!" ); 
  Console .WriteLine ( "But hey, I still have the lock on x!" ); 
} 

This rationale for this behavior is that in a well-designed Wait /Pulse application, the object on which 
one calls Wait  and Pulse is locked just briefly. So re-acquiring the lock should be a near-instant 
operation. 

Pulsing and acknowledgement 

An important feature of Monitor.Pulse is that it executes asynchronously, meaning that it doesn't 
itself block or pause in any way. If another thread is waiting on the pulsed object, it's notified, 
otherwise the pulse has no effect and is silently ignored. 

Pulse provides one-way communication: a pulsing thread signals a waiting thread. There is no 
intrinsic acknowledgment mechanism: Pulse does not return a value indicating whether or not its 
pulse was received. Furthermore, when a notifier pulses and releases its lock, there's no guarantee that 
an eligible waiter will kick into life immediately. There can be an arbitrary delay, at the discretion of 
the thread scheduler – during which time neither thread has the lock. This makes it difficult to know 
when a waiter has actually resumed, unless the waiter specifically acknowledges, for instance via a 
custom flag. 

Relying on timely action from a waiter with no custom acknowledgement mechanism counts as 
"messing" with Pulse and Wait . You'll lose! 

If reliable acknowledgement is required, it must be explicitly coded, usually via a flag in 
conjunction with another, reciprocal, Pulse and Wait . 
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Waiting queues and PulseAll 

More than one thread can simultaneously Wait  upon the same object – in which case a "waiting 
queue" forms behind the synchronizing object (this is distinct from the "ready queue" used for 
granting access to a lock). Each Pulse then releases a single thread at the head of the waiting-queue, 
so it can enter the ready-queue and re-acquire the lock. Think of it like an automatic car park: you 
queue first at the pay station to validate your ticket (the waiting queue); you queue again at the barrier 
gate to be let out (the ready queue). 

 

Figure 2: Waiting Queue vs. Ready Queue 

The order inherent in the queue structure, however, is often unimportant in Wait /Pulse applications, 
and in these cases it can be easier to imagine a "pool" of waiting threads. Each pulse, then, releases 
one waiting thread from the pool. 

Monitor  also provides a PulseAll method that releases the entire queue, or pool, of waiting threads in 
a one-fell swoop. The pulsed threads won't all start executing exactly at the same time, however, but 
rather in an orderly sequence, as each of their Wait  statements tries to re-acquire the same lock. In 
effect, PulseAll moves threads from the waiting-queue to the ready-queue, so they can resume in an 
orderly fashion. 

How to use Pulse and Wait 
Here's how we start. Imagine there are two rules: 

• the only synchronization construct available is the lock statement, aka Monitor.Enter  and 
Monitor.Exit  

• there are no restrictions on spinning the CPU! 

With those rules in mind, let's take a simple example: a worker thread that pauses until it receives 
notification from the main thread:
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class  SimpleWaitPulse  { 
  bool  go; 
  object  locker = new object (); 
  
  void  Work() { 
    Console .Write ( "Waiting... " ); 
    lock  (locker) {                        // Let's spin!  
      while  (!go) { 
        // Release the lock so other threads can change the  go flag  
        Monitor .Exit (locker);  
        // Regain the lock so we can re-test go in the whil e loop  
        Monitor .Enter (locker); 
      } 
    } 
    Console .WriteLine ( "Notified!" ); 
  } 
  
  void  Notify() // called from another thread  
  { 
    lock  (locker) { 
      Console .Write ( "Notifying... " ); 
      go = true ; 
    } 
  } 
} 

Here's a main method to set things in motion: 

static  void  Main() { 
  SimpleWaitPulse  test = new SimpleWaitPulse (); 
  
  // Run the Work method on its own thread  
  new Thread  (test.Work).Start();            // "Waiting..."  
  
  // Pause for a second, then notify the worker via o ur main thread:  
  Thread .Sleep (1000); 
  test.Notify();                 // "Notifying... Notified!"  
} 

The Work  method is where we spin – extravagantly consuming CPU time by looping constantly until 
the go flag is true! In this loop we have to keep toggling the lock – releasing and re-acquiring it via 
Monitor 's Exit  and Enter methods – so that another thread running the Notify  method can itself get 
the lock and modify the go flag. The shared go field must always be accessed from within a lock to 
avoid volatility issues (remember that all other synchronization constructs, such as the volatile 
keyword, are out of bounds in this stage of the design!) 

The next step is to run this and test that it actually works. Here's the output from the test Main  
method: 

Waiting... (pause) Notifying... Notified! 

Now we can introduce Wait  and Pulse. We do this by: 

• replacing lock toggling (Monitor.Exit  followed by Monitor.Enter ) with Monitor.Wait  

• inserting a call to Monitor.Pulse when a blocking condition is changed (i.e. the go flag is 
modified). 
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Here's the updated class, with the Console statements omitted for brevity: 

class  SimpleWaitPulse  { 
  bool  go; 
  object  locker = new object (); 
  
  void  Work() { 
    lock  (locker) 
      while  (!go) Monitor.Wait (locker); 
  } 
  
  void  Notify() { 
    lock  (locker) { 
      go = true ; 
      Monitor.Pulse (locker); 
    } 
  } 
} 

The class behaves as it did before, but with the spinning eliminated. The Wait  command implicitly 
performs the code we removed – Monitor.Exit  followed by Monitor.Exit , but with one extra step in 
the middle: while the lock is released, it waits for another thread to call Pulse. The Notifier method 
does just this, after setting the go flag true. The job is done. 

Pulse and Wait Generalized 
Let's now expand the pattern. In the previous example, our blocking condition involved just one 
boolean field – the go flag. We could, in another scenario, require an additional flag set by the 
waiting thread to signal that's it's ready or complete. If we extrapolate by supposing there could be 
any number of fields involved in any number of blocking conditions, the program can be generalized 
into the following pseudo-code (in its spinning form): 

class  X { 

  Blocking Fields:  one or more objects involved in blocking condition(s), eg 

   bool go;   bool ready;   int semaphoreCount;   Queue <Task> consumerQ... 
  
  object  locker = new object ();     // protects all the above fields!  
  

  ... SomeMethod { 

    ... whenever I want to BLOCK based on the blocking fields: 
    lock (locker) 

      while  (!  blocking fields to my liking ) { 
        // Give other threads a chance to change bl ocking fields! 
        Monitor .Exit (locker); 
        Monitor .Enter (locker); 
      } 
  

    ... whenever I want to ALTER one or more of the blocking fields: 

    lock  (locker) { alter blocking field(s) } 
  } 
} 

We then apply Pulse and Wait as we did before: 

• In the waiting loops, lock toggling is replaced with Monitor.Wait 

• Whenever a blocking condition is changed, Pulse is called before releasing the lock. 
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Here's the updated pseudo-code: 

Wait/Pulse Boilerplate #1: Basic Wait/Pulse Usage 
class  X { 

  < Blocking Fields ... > 
  object  locker = new object (); 
 

  ... SomeMethod { 

    ... 

    ... whenever I want to BLOCK based on the blocking fields: 
    lock  (locker) 

      while  (!  blocking fields to my liking ) 
        Monitor.Wait (locker); 
 

    ... whenever I want to ALTER one or more of the blocking fields: 
    lock  (locker) { 

      alter blocking field(s) 
      Monitor.Pulse (locker); 
    }      
  } 
} 

This provides a robust pattern for using Wait  and Pulse. Here are the key features to this pattern: 

• Blocking conditions are implemented using custom fields (capable of functioning without 
Wait  and Pulse, albeit with spinning) 

• Wait  is always called within a while loop that checks its blocking condition (itself within 
a lock statement) 

• A single synchronization object (in the example above, locker) is used for all Waits and 
Pulses, and to protect access to all objects involved in all blocking conditions 

• Locks are held only briefly 

Most importantly, with this pattern, pulsing does not force a waiter to continue. Rather, it notifies a 
waiter that something has changed, advising it to re-check its blocking condition. The waiter then 
determines whether or not it should proceed (via another iteration of its while loop) – and not the 
pulser. The benefit of this approach is that it allows for sophisticated blocking conditions, without 
sophisticated synchronization logic. 

Another benefit of this pattern is immunity to the effects of a missed pulse. A missed pulse happens 
when Pulse is called before Wait  – perhaps due to a race between the notifier and waiter. But 
because in this pattern a pulse means "re-check your blocking condition" (and not "continue"), an 
early pulse can safely be ignored since the blocking condition is always checked before calling Wait, 
thanks to the while statement. 

With this design, one can define multiple blocking fields, and have them partake in multiple 
blocking conditions, and yet still use a single synchronization object throughout (in our example, 
locker). This is usually better than having separate synchronization objects on which to lock, Pulse 
and Wait , in that one avoids the possibility of deadlock. Furthermore, with a single locking object, 
all blocking fields are read and written to as a unit, avoiding subtle atomicity errors. It's a good idea, 
however, not to use the synchronization object for purposes outside of the necessary scope (this can 
be assisted by declaring private the synchronization object, as well as all blocking fields). 
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Producer/Consumer Queue 
A simple Wait /Pulse application is a producer-consumer queue – the structure we wrote earlier 
using an AutoResetEvent. A producer enqueues tasks (typically on the main thread), while one or 
more consumers running on worker threads pick off and execute the tasks one by one. 

In this example, we'll use a string to represent a task. Our task queue then looks like this: 

Queue<string > taskQ = new Queue<string >(); 

Because the queue will be used on multiple threads, we must wrap all statements that read or write to 
the queue in a lock. Here's how we enqueue a task: 

lock  (locker) { 
  taskQ.Enqueue ( "my task" ); 
  Monitor .PulseAll (locker);   // We're altering a blocking condition  
} 

Because we're modifying a potential blocking condition, we must pulse. We call PulseAll rather than 
Pulse because we're going to allow for multiple consumers. More than one thread may be waiting. 

We want the workers to block while there's nothing to do, in other words, when there are no items on 
the queue. Hence our blocking condition is taskQ.Count==0. Here's a Wait  statement that performs 
exactly this: 

lock  (locker) 
  while  (taskQ.Count == 0) Monitor .Wait (locker); 

The next step is for the worker to dequeue the task and execute it: 

lock  (locker) 
  while  (taskQ.Count == 0) Monitor .Wait (locker); 
  
string  task; 
lock  (locker) 
  task = taskQ.Dequeue(); 

This logic, however, is not thread-safe: we've basing a decision to dequeue upon stale information – 
obtained in a prior lock statement. Consider what would happen if we started two consumer threads 
concurrently, with a single item already on the queue. It's possible that neither thread would enter the 
while loop to block – both seeing a single item on the queue. They'd both then attempt to dequeue the 
same item, throwing an exception in the second instance! To fix this, we simply hold the lock a bit 
longer – until we've finished interacting with the queue: 

string  task; 
lock  (locker) { 
  while  (taskQ.Count == 0) Monitor .Wait (locker); 
  task = taskQ.Dequeue(); 
} 

(We don't need to call Pulse after dequeuing, as no consumer can ever unblock by there being fewer 
items on the queue). 

Once the task is dequeued, there's no further requirement to keep the lock. Releasing it at this point 
allows the consumer to perform a possibly time-consuming task without unnecessary blocking other 
threads. 
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Here's the complete program. As with the AutoResetEvent version, we enqueue a null task to signal a 
consumer to exit (after finishing any outstanding tasks). Because we're supporting multiple 
consumers, we must enqueue one null task per consumer to completely shut down the queue: 

Wait/Pulse Boilerplate #2: Producer/Consumer Queue 
using  System; 
using  System.Threading; 
using  System.Collections.Generic; 
 
public  class  TaskQueue  : IDisposable  { 
  object  locker = new object (); 
  Thread [] workers; 
  Queue<string > taskQ = new Queue<string >(); 
 
  public  TaskQueue ( int  workerCount) { 
    workers = new Thread  [workerCount]; 
 
    // Create and start a separate thread for each work er 
    for  ( int  i = 0; i < workerCount; i++) 
      (workers [i] = new Thread  (Consume)).Start(); 
  } 
 
  public  void  Dispose() { 
    // Enqueue one null task per worker to make each ex it. 
    foreach  ( Thread  worker in  workers) EnqueueTask ( null ); 
    foreach  ( Thread  worker in  workers) worker.Join(); 
  } 
 
  public  void  EnqueueTask ( string  task) { 
    lock  (locker) { 
      taskQ.Enqueue (task); 
      Monitor.PulseAll (locker); 
    } 
  } 
 
  void  Consume() { 
    while  ( true ) { 
      string  task; 
      lock  (locker) { 
        while  (taskQ.Count == 0) Monitor.Wait (locker); 
        task = taskQ.Dequeue(); 
      } 
      if  (task == null ) return ;         // This signals our exit 
      Console .Write (task); 
      Thread .Sleep (1000);              // Simulate time-consuming task 
    } 
  } 
} 

Here's a Main  method that starts a task queue, specifying two concurrent consumer threads, and then 
enqueues ten tasks to be shared amongst the two consumers: 
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  static  void  Main() { 
    using  ( TaskQueue  q = new TaskQueue  (2)) { 
      for  ( int  i = 0; i < 10; i++) 
        q.EnqueueTask ( " Task"  + i); 
  
      Console .WriteLine ( "Enqueued 10 tasks" ); 
      Console .WriteLine ( "Waiting for tasks to complete..." ); 
    } 
    // Exiting the using statement runs TaskQueue's Dis pose method,  
    // which shuts down the consumers, after all outsta nding tasks 
    // have completed.  
    Console .WriteLine ( "\r\nAll tasks done!" ); 
  } 

Enqueued 10 tasks 
Waiting for tasks to complete... 

 Task1 Task0 (pause...) Task2 Task3 (pause...) Task4 Task5 (pause...) 

 Task6 Task7 (pause...) Task8 Task9 (pause...)  
All tasks done! 

Consistent with our design pattern, if we remove PulseAll and replace Wait  with lock toggling, we'll 
get the same output. 

Pulse Economy 

Let's revisit the producer enqueuing a task: 

lock  (locker) { 
  taskQ.Enqueue (task); 
  Monitor .PulseAll (locker); 
} 

Strictly speaking, we could economize by pulsing only when there's a possibility of a freeing a 
blocked worker: 

lock  (locker) { 
  taskQ.Enqueue (task); 
  if  (taskQ.Count <= workers.Length) Monitor .PulseAll (locker); 
} 

We'd be saving very little, though, since pulsing typically takes under a microsecond, and incurs no 
overhead on busy workers – since they ignore it anyway! It's a good policy with multi-threaded code 
to cull any unnecessary logic: an intermittent bug due to a silly mistake is a heavy price to pay for a 
one-microsecond saving! To demonstrate, this is all it would take to introduce an intermittent "stuck 
worker" bug that would most likely evade initial testing (spot the difference): 

lock  (locker) { 
  taskQ.Enqueue (task); 
  if  (taskQ.Count < workers.Length) Monitor .PulseAll (locker); 
} 

Pulsing unconditionally protects us from this type of bug. 

If in doubt, Pulse. Rarely can you go wrong by pulsing, within this design pattern. 
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Pulse or PulseAll? 

This example comes with further pulse economy potential. After enqueuing a task, we could call 
Pulse instead of PulseAll and nothing would break. 

Let's recap the difference: with Pulse, a maximum of one thread can awake (and re-check its while-
loop blocking condition); with PulseAll, all waiting threads will awake (and re-check their blocking 
conditions). If we're enqueing a single task, only one worker can handle it, so we need only wake up 
one worker with a single Pulse. It's rather like having a class of sleeping children – if there's just one 
ice-cream there's no point in waking them all to queue for it! 

In our example we start only two consumer threads, so we would have little to gain. But if we started 
ten consumers, we might benefit slightly in choosing Pulse over PulseAll. It would mean, though, 
that if we enqueued multiple tasks, we would need to Pulse multiple times. This can be done within a 
single lock statement, as follows: 

lock  (locker) { 
  taskQ.Enqueue ( "task 1" ); 
  taskQ.Enqueue ( "task 2" ); 
  Monitor .Pulse (locker);    // "Signal up to two  
  Monitor .Pulse (locker);    //  waiting threads."  
} 

The price of one Pulse too few is a stuck worker. This will usually manifest as an intermittent bug, 
because it will crop up only when a consumer is in a Waiting  state. Hence one could extend the 
previous maxim "if in doubt, Pulse", to "if in doubt, PulseAll!"  

A possible exception to the rule might arise if evaluating the blocking condition was unusually time-
consuming. 

Using Wait Timeouts 
Sometimes it may be unreasonable or impossible to Pulse whenever an unblocking condition arises. 
An example might be if a blocking condition involves calling a method that derives information from 
periodically querying a database. If latency is not an issue, the solution is simple: one can specify a 
timeout when calling Wait , as follows: 

lock  (locker) { 

  while  (  blocking condition ) 

    Monitor .Wait (locker, timeout); 

This forces the blocking condition to be re-checked, at a minimum, at a regular interval specified by 
the timeout, as well as immediately upon receiving a pulse. The simpler the blocking condition, the 
smaller the timeout can be without causing inefficiency. 

The same system works equally well if the pulse is absent due to a bug in the program! It can be 
worth adding a timeout to all Wait  commands in programs where synchronization is particularly 
complex – as an ultimate backup for obscure pulsing errors. It also provides a degree of bug-
immunity if the program is modified later by someone not on the Pulse! 

Races and Acknowledgement 
Let's say we want a signal a worker five times in a row: 
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class  Race { 
  static  object  locker = new object (); 
  static  bool  go; 
  
  static  void  Main() { 
    new Thread  (SaySomething).Start(); 
  
    for  ( int  i = 0; i < 5; i++) { 
      lock  (locker) { go = true ; Monitor .Pulse (locker); } 
    } 
  } 
  
  static  void  SaySomething() { 
    for  ( int  i = 0; i < 5; i++) { 
      lock  (locker) { 
        while  (!go) Monitor .Wait (locker); 
        go = false ; 
      } 
      Console .WriteLine ( "Wassup?" ); 
    } 
  } 
} 
  
Expected Output: 

Wassup? 
Wassup? 
Wassup? 
Wassup? 
Wassup? 

Actual Output: 

Wassup? 

 (hangs) 

This program is flawed: the for  loop in the main thread can free-wheel right through its five iterations 
any time the worker doesn't hold the lock. Possibly before the worker even starts! The 
Producer/Consumer example didn't suffer from this problem because if the main thread got ahead of 
the worker, each request would simply queue up. But in this case, we need the main thread to block at 
each iteration if the worker's still busy with a previous task. 

A simple solution is for the main thread to wait after each cycle until the go flag is cleared by the 
worker. This, then, requires that the worker call Pulse after clearing the go flag: 
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class  Acknowledged  { 
 static  object  locker = new object (); 
  static  bool  go; 
  
  static  void  Main() { 
    new Thread  (SaySomething).Start(); 
  
    for  ( int  i = 0; i < 5; i++) { 
      lock  (locker) { go = true ; Monitor.Pulse (locker); } 
      lock  (locker) { while  (go) Monitor.Wait (locker); } 
    } 
  } 
  
  static  void  SaySomething() { 
    for  ( int  i = 0; i < 5; i++) { 
      lock  (locker) { 
        while  (!go) Monitor.Wait (locker); 
        go = false ; Monitor.Pulse (locker);   // Worker must Pulse  
      } 
      Console .WriteLine ( "Wassup?" ); 
    } 
  } 
} 

Wassup? (repeated five times) 

An important feature of such a program is that the worker releases its lock before performing its 
potentially time-consuming job (this would happen in place of where we're calling 
Console.WriteLine). This ensures the instigator is not unduly blocked while the worker performs the 
task for which it has been signaled (and is blocked only if the worker is busy with a previous task). 

In this example, only one thread (the main thread) signals the worker to perform a task. If multiple 
threads were to signal the worker – using our Main  method's logic – we would come unstuck. Two 
signaling threads could each execute the following line of code in sequence: 

  lock  (locker) { go = true ; Monitor .Pulse (locker); } 

resulting in the second signal being lost if the worker didn't happen to have finish processing the first. 
We can make our design robust in this scenario by using a pair of flags – a "ready" flag as well as a 
"go" flag. The "ready" flag indicates that the worker is able to accept a fresh task; the "go" flag is an 
instruction to proceed, as before. This is analogous to a previous example that performed the same 
thing using two AutoResetEvents, except more extensible.  Here's the pattern, refactored with 
instance fields: 
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Wait/Pulse Boilerplate #3: Two-way Signaling 
public class  Acknowledged  { 
  object  locker = new object (); 
  bool  ready; 
  bool  go;   
 
  public  void  NotifyWhenReady() { 
    lock  (locker) { 
      // Wait if the worker's already busy with a previou s job  
      while  (!ready) Monitor .Wait (locker); 
      ready = false ; 
      go = true ; 
      Monitor .PulseAll (locker); 
    } 
  } 
 
  public  void  AcknowledgedWait() {     
    // Indicate that we're ready to process a request 
    lock  (locker) { ready = true ; Monitor .Pulse (locker); } 
       
    lock  (locker) { 
      while  (!go) Monitor .Wait (locker);      // Wait for a "go" signal 
      go = false ; Monitor .PulseAll (locker);  // Acknowledge signal 
    } 
       
    Console .WriteLine ( "Wassup?" );            // Perform task 
  } 
} 

To demonstrate, we'll start two concurrent threads, each that will notify the worker five times. 
Meanwhile, the main thread will wait for ten notifications: 

public class  Test { 
  static Acknowledged  a = new Acknowledged (); 
  
 static  void  Main() { 
    new Thread  (Notify5).Start();     // Run two concurrent  
    new Thread  (Notify5).Start();     // notifiers...  
    Wait10();                         // ... and one waiter.  
  } 
  
  static void  Notify5() { 
    for  ( int  i = 0; i < 5; i++) 
      a.NotifyWhenReady(); 
  } 
  
  static void  Wait10() { 
    for  ( int  i = 0; i < 10; i++) 
      a.AcknowledgedWait(); 
  } 
} 

Wassup? 
Wassup? 
Wassup? 

 (repeated ten times) 
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In the Notify  method, the ready flag is cleared before exiting the lock statement. This is vitally 
important: it prevents two notifiers signaling sequentially without re-checking the flag. For the sake 
of simplicity, we also set the go flag and call PulseAll in the same lock statement – although we 
could just as well put this pair of statements in a separate lock and nothing would break. 

Simulating Wait Handles 
You might have noticed a pattern in the previous example: both waiting loops have the following 
structure: 

lock  (locker) { 

  while  (! flag) Monitor .Wait (locker); 

  flag = false ; 
 ... 
} 

where flag is set to true in another thread. This is, in effect, mimicking an AutoResetEvent. If we 
omitted flag=false, we'd then have a ManualResetEvent. Using an integer field, Pulse and Wait  can 
also be used to mimic a Semaphore. In fact the only Wait Handle we can't mimic with Pulse and 
Wait  is a Mutex, since this functionality is provided by the lock statement. 

Simulating the static methods that work across multiple Wait Handles is in most cases easy. The 
equivalent of calling WaitAll across multiple EventWaitHandles is nothing more than a blocking 
condition that incorporates all the flags used in place of the Wait Handles: 

lock  (locker) { 
  while  (!flag1 && !flag2 && !flag3...) Monitor .Wait (locker); 

This can be particularly useful given that WaitAll  is in most cases unusable due to COM legacy 
issues. Simulating WaitAny  is simply a matter of replacing the &&  operator with the || operator. 

SignalAndWait is trickier. Recall that this method signals one handle while waiting on another in an 
atomic operation. We have a situation analogous to a distributed database transaction – we need a 
two-phase commit! Assuming we wanted to signal flagA while waiting on flagB, we'd have to divide 
each flag into two, resulting in code that might look something like this: 

lock  (locker) { 
  flagAphase1 = true ; 
  Monitor .Pulse (locker); 
  while  (!flagBphase1) Monitor .Wait (locker); 
  
  flagAphase2 = true ; 
  Monitor .Pulse (locker); 
  while  (!flagBphase2) Monitor .Wait (locker); 
} 

perhaps with additional "rollback" logic to retract flagAphase1 if the first Wait  statement threw an 
exception as a result of being interrupted or aborted. This is one situation where Wait Handles are 
way easier! True atomic signal-and-waiting, however, is actually an unusual requirement. 
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Wait Rendezvous 

Just as WaitHandle.SignalAndWait can be used to rendezvous a pair of threads, so can Wait  and 
Pulse. In the following example, one could say we simulate two ManualResetEvents (in other 
words, we define two boolean flags!) and then perform reciprocal signal-and-waiting by setting one 
flag while waiting for the other. In this case we don't need true atomicity in signal-and-waiting, so can 
avoid the need for a "two-phase commit". As long as we set our flag true and Wait in the same lock 
statement, the rendezvous will work: 

class  Rendezvous  { 
  static  object  locker = new object (); 
  static  bool  signal1, signal2; 
  
  static  void  Main() { 
    // Get each thread to sleep a random amount of time .  
    Random r = new Random(); 
    new Thread  (Mate).Start (r.Next (10000)); 
    Thread .Sleep (r.Next (10000)); 
  
    lock  (locker) { 
      signal1 = true ; 
      Monitor.Pulse (locker); 
      while  (!signal2) Monitor.Wait (locker); 
    } 
    Console .Write ( "Mate! " ); 
  } 
  
  // This is called via a ParameterizedThreadStart  
  static  void  Mate ( object  delay) { 
    Thread .Sleep (( int ) delay); 
    lock  (locker) { 
      signal2 = true ; 
      Monitor.Pulse (locker); 
      while  (!signal1) Monitor.Wait (locker); 
    } 
    Console .Write ( "Mate! " ); 
  } 
} 

Mate! Mate! (almost in unison) 

Wait and Pulse vs. Wait Handles 
Because Wait  and Pulse are the most flexible of the synchronization constructs, they can be used in 
almost any situation. Wait Handles, however, have two advantages: 

• they have the capability of working across multiple processes 

• they are simpler to understand, and harder to break 

Additionally, Wait Handles are more interoperable in the sense that they can be passed around via 
method arguments. In thread pooling, this technique is usefully employed. 

In terms of performance, Wait  and Pulse have a slight edge, if one follows the suggested design 
pattern for waiting, that is: 

lock  (locker) 

  while  (  blocking condition ) Monitor .Wait (locker); 
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and the blocking condition happens to false from the outset. The only overhead then incurred is that 
of taking out the lock (tens of nanoseconds) versus the few microseconds it would take to call 
WaitHandle.WaitOne. Of course, this assumes the lock is uncontended; even the briefest lock 
contention would be more than enough to even things out; frequent lock contention would make a 
Wait Handle faster! 

A sensible guideline is to use a Wait Handle where a particular construct lends itself naturally to the 
job, otherwise use Wait  and Pulse. 

Suspend and Resume 
A thread can be explicitly suspended and resumed via the methods Thread.Suspend and 
Thread.Resume. This mechanism is completely separate to that of blocking discussed previously. 
Both systems are independent and operate in parallel. 

A thread can suspend itself or another thread. Calling Suspend results in the thread briefly entering 
the SuspendRequested state, then upon reaching a point safe for garbage collection, it enters the 
Suspended state. From there, it can be resumed only via another thread that calls its Resume method. 
Resume will work only on a suspended thread, not a blocked thread. 

From .NET 2.0, Suspend and Resume have been deprecated, their use discouraged because of the 
danger inherent in arbitrarily suspending another thread. If a thread holding a lock on a critical 
resource is suspended, the whole application (or computer) can deadlock. This is far more dangerous 
than calling Abort – which would result in any such locks being released – at least theoretically – by 
virtue of code in finally  blocks. 

It is, however, safe to call Suspend on the current thread – and in doing so one can implement a 
simple synchronization mechanism – with a worker thread in a loop – performing a task, calling 
Suspend on itself, then waiting to be resumed (“woken up”) by the main thread when another task is 
ready. The difficulty, though, is in testing whether or not the worker is suspended. Consider the 
following code: 

worker.NextTask = "MowTheLawn" ; 
if  ((worker.ThreadState & ThreadState .Suspended) > 0) 
  worker.Resume; 
else  
  // We cannot call Resume as the thread's already ru nning.  
  // Signal the worker with a flag instead:  
  worker.AnotherTaskAwaits = true ; 

This is horribly thread-unsafe – the code could be preempted at any point in these five lines – during 
which the worker could march on in and change its state. While it can be worked around, the solution 
is more complex than the alternative – using a synchronization construct such as an AutoResetEvent 
or Monitor.Wait. This makes Suspend and Resume useless on all counts. 

Given the potential for variation through different CPUs, operating systems, CLR versions, and 
program logic; and that in any case a few microseconds is unlikely to be of any consequence 
before a Wait  statement, performance may be a dubious reason to choose Wait  and Pulse over 
Wait Handles, or vice versa. 

The deprecated Suspend and Resume methods have two modes – dangerous and useless! 
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Aborting Threads 
A thread can be ended forcibly via the Abort  method: 

class  Abort  { 
  static  void  Main() { 
    Thread  t = new Thread  ( delegate () { while ( true );});   // Spin forever  
    t.Start(); 
    Thread .Sleep (1000);        // Let it run for a second...  
    t. Abort();                  // then abort it.  
  } 
} 

The thread upon being aborted immediately enters the AbortRequested state. If it then terminates as 
expected, it goes into the Stopped state. The caller can wait for this to happen by calling Join: 

class  Abort  { 
  static  void  Main() { 
    Thread  t = new Thread  ( delegate () { while  ( true ); }); 
    Console .WriteLine (t.ThreadState);     // Unstarted  
  
    t. Start(); 
    Thread .Sleep (1000); 
    Console .WriteLine (t.ThreadState);     // Running  
  
    t. Abort(); 
    Console .WriteLine (t.ThreadState);     // AbortRequested  
  
    t. Join(); 
    Console .WriteLine (t.ThreadState);     // Stopped  
  } 
} 

Abort  causes a ThreadAbortException to be thrown on the target thread, in most cases right where 
the thread's executing at the time. The thread being aborted can choose to handle the exception, but 
the exception then gets automatically re-thrown at the end of the catch block (to help ensure the 
thread, indeed, ends as expected). It is, however, possible to prevent the automatic re-throw by calling 
Thread.ResetAbort within the catch block. Then thread then re-enters the Running state (from 
which it can potentially be aborted again). In the following example, the worker thread comes back 
from the dead each time an Abort  is attempted: 

class  Terminator  { 
  static  void  Main() { 
    Thread  t = new Thread  (Work); 
    t.Start(); 
    Thread .Sleep (1000); t.Abort(); 
    Thread .Sleep (1000); t.Abort(); 
    Thread .Sleep (1000); t.Abort(); 
  } 
  
  static  void  Work() { 
    while  ( true ) { 
      try  { while  ( true ); } 
      catch  ( ThreadAbortException) { Thread . ResetAbort(); } 
      Console .WriteLine ( "I will not die!" ); 
    } 
  } 
} 
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ThreadAbortException is treated specially by the runtime, in that it doesn't cause the whole 
application to terminate if unhandled, unlike all other types of exception. 

Abort  will work on a thread in almost any state – running, blocked, suspended, or stopped. However 
if a suspended thread is aborted, a ThreadStateException is thrown – this time on the calling thread 
– and the abortion doesn't kick off until the thread is subsequently resumed. Here's how to abort a 
suspended thread: 

try  { suspendedThread.Abort(); } 
catch  ( ThreadStateException ) { suspendedThread.Resume(); } 
// Now the suspendedThread will abort.  

Complications with Thread.Abort 
Assuming an aborted thread doesn't call ResetAbort, one might expect it to terminate fairly quickly. 
But as it happens, with a good lawyer the thread may remain on death row for quite some time! Here 
are a few factors that may keep it lingering in the AbortRequested state: 

• Static class constructors are never aborted part-way through (so as not to potentially 
poison the class for the remaining life of the application domain) 

• All catch/finally blocks are honored, and never aborted mid-stream 

• If the thread is executing unmanaged code when aborted, execution continues until the 
next managed code statement is reached 

The last factor can be particularly troublesome, in that the .NET framework itself often calls 
unmanaged code, sometimes remaining there for long periods of time. An example might be when 
using a networking or database class. If the network resource or database server dies or is slow to 
respond, it's possible that execution could remain entirely within unmanaged code, for perhaps 
minutes, depending on the implementation of the class. In these cases, one certainly wouldn't want to 
Join the aborted thread – at least not without a timeout!  

Aborting pure .NET code is less problematic, as long as try/finally  blocks or using statements are 
incorporated to ensure proper cleanup takes place should a ThreadAbortException be thrown. 
However, even then, one can still be vulnerable to nasty surprises. For example, consider the 
following: 

using  ( StreamWriter  w = File .CreateText ( "myfile.txt" )) 
  w.Write ( "Abort-Safe?" ); 

C#'s using statement is simply a syntactic shortcut, which in this case expands to the following: 

StreamWriter  w; 
w = File .CreateText ( "myfile.txt" ); 
try      { w.Write ( "Abort-Safe" ); } 
finally  { w.Dispose();            }   

It's possible for an Abort  to fire after the StreamWriter is created, but before the try  block begins. 
In fact, by digging into the IL, one can see that it's also possible for it to fire in between the 
StreamWriter  being created and assigned to w: 

IL_0001:  ldstr      "myfile.txt" 
IL_0006:  call       class [mscorlib]System.IO.Stre amWriter 
                     [mscorlib]System.IO.File::Crea teText(string) 
IL_000b:  stloc.0 
.try 
{ 
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  ... 

Either way, the Dispose method in the finally  block is circumvented, resulting in an abandoned open 
file handle – preventing any subsequent attempts to create myfile.txt  until the application domain 
ends. 

In reality, the situation in this example is worse still, because an Abort  would most likely take place 
within the implementation of File.CreateText. This is referred to as opaque code – that which we 
don't have the source. Fortunately, .NET code is never truly opaque: we can again wheel in ILDASM, 
or better still, Lutz Roeder's Reflector – and looking into the framework's assemblies, see that it calls 
StreamWriter' s constructor, which has the following logic: 

public  StreamWriter ( string  path, bool  append, ...) 
{ 
  ... 
  ... 
  Stream stream1 = StreamWriter.CreateFile (path, a ppend); 
  this .Init (stream1, ...); 
} 

Nowhere in this constructor is there a try/catch block, meaning that if the Abort  fires anywhere 
within the (non-trivial) Init  method, the newly created stream will be abandoned, with no way of 
closing the underlying file handle. 

Because disassembling every required CLR call is obviously impractical, this raises the question on 
how one should go about writing an abort-friendly method. The most common workaround is not to 
abort another thread at all – but rather add a custom boolean field to the worker's class, signaling that 
it should abort. The worker checks the flag periodically, exiting gracefully if true. Ironically, the most 
graceful exit for the worker is by calling Abort on its own thread – although explicitly throwing an 
exception also works well. This ensures the thread's backed right out, while executing any 
catch/finally blocks – rather like calling Abort  from another thread, except the exception is thrown 
only from designated places: 

class  ProLife  { 
  public  static  void  Main() { 
    RulyWorker  w = new RulyWorker (); 
    Thread  t = new Thread  (w.Work); 
    t.Start(); 
    Thread .Sleep (500); 
    w.Abort(); 
  } 
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  public  class  RulyWorker  { 
    // The volatile keyword ensures abort is not cached  by a thread  
    volatile  bool  abort;    
  
    public  void  Abort() { abort = true ; } 
  
    public  void  Work() { 
      while  ( true ) { 
        CheckAbort(); 
        // Do stuff...  
        try       { OtherMethod(); } 
        finally   { /* any required cleanup */  } 
      } 
    } 
  
    void  OtherMethod() { 
      // Do stuff...  
      CheckAbort(); 
    } 
  
    void  CheckAbort() { if (abort) Thread.CurrentThread.Abort(); } 
  } 
} 
  

Ending Application Domains 
Another way to implement an abort-friendly worker is by having its thread run in its own application 
domain. After calling Abort , one simply tears down the application domain, thereby releasing any 
resources that were improperly disposed. 

Strictly speaking, the first step – aborting the thread – is unnecessary, because when an application 
domain is unloaded, all threads executing code in that domain are automatically aborted. However, 
the disadvantage of relying on this behavior is that if the aborted threads don't exit in a timely fashion 
(perhaps due to code in finally  blocks, or for other reasons discussed previously) the application 
domain will not unload, and a CannotUnloadAppDomainException will be thrown on the caller. 
For this reason, it's better to explicitly abort the worker thread, then call Join with some timeout (over 
which you have control) before unloading the application domain. 

In the following example, the worker enters an infinite loop, creating and closing a file using the 
abort-unsafe File.CreateText method. The main thread then repeatedly starts and aborts workers. It 
usually fails within one or two iterations, with CreateText getting aborted part way through its 
internal implementation, leaving behind an abandoned open file handle: 

Calling Abort  on one's own thread is one circumstance in which Abort  is totally safe. Another 
is when you can be certain the thread you're aborting is in a particular section of code, usually 
by virtue of a synchronization mechanism such as a Wait Handle or Monitor.Wait. A third 
instance in which calling Abort  is safe is when you subsequently tear down the thread's 
application domain or process. 
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using  System; 
using  System.IO; 
using  System.Threading; 
  
class  Program  { 
  static  void  Main() { 
    while  ( true ) { 
      Thread  t = new Thread  (Work); 
      t.Start(); 
      Thread .Sleep (100); 
      t.Abort(); 
      Console .WriteLine ( "Aborted" ); 
    } 
  } 
  
  static  void  Work() { 
    while  ( true ) 
      using  ( StreamWriter  w = File .CreateText ( "myfile.txt" )) { } 
  } 
} 

Aborted 
Aborted 
IOException: The process cannot access the file 'my file.txt' because it 
is being used by another process. 

Here's the same program modified so the worker thread runs in its own application domain, which is 
unloaded after the thread is aborted. It runs perpetually without error, because unloading the 
application domain releases the abandoned file handle: 

class  Program  { 
  static  void  Main ( string  [] args) { 
    while  ( true ) { 
      AppDomain  ad = AppDomain.CreateDomain ( "worker" ); 
      Thread  t = new Thread  ( delegate () { ad.DoCallBack (Work); }); 
      t.Start(); 
      Thread .Sleep (100); 
      t.Abort(); 
      if  (!t.Join (2000)) { 
        // Thread won't end - here's where we could take fu rther action,  
        // if, indeed, there was anything we could do. Fort unately in  
        // this case, we can expect the thread *always* to end.  
      } 
      AppDomain.Unload (ad);            // Tear down the polluted domain!  
      Console .WriteLine ( "Aborted" ); 
    } 
  } 
  
  static  void  Work() { 
    while  ( true ) 
      using  ( StreamWriter  w = File .CreateText ( "myfile.txt" )) { } 
  } 
} 

Aborted 
Aborted 
Aborted 
Aborted 

... 

... 
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Creating and destroying an application domain is classed as relatively time-consuming in the world of 
threading activities (taking a few milliseconds) so it's something conducive to being done irregularly 
rather than in a loop! Also, the separation introduced by the application domain introduces another 
element that can be either of benefit or detriment, depending on what the multi-threaded program is 
setting out to achieve. In a unit-testing context, for instance, running threads on separate application 
domains can be of great benefit. 

Ending Processes 
Another way in which a thread can end is when the parent process terminates. One example of this is 
when a worker thread's IsBackground property is set to true, and the main thread finishes while the 
worker is still running. The background thread is unable to keep the application alive, and so the 
process terminates, taking the background thread with it. 

When a thread terminates because of its parent process, it stops dead, and no finally  blocks are 
executed. 

The same situation arises when a user terminates an unresponsive application via the Windows Task 
Manager, or a process is killed programmatically via Process.Kill. 
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