Threading in C#

Joseph Albahari

Interested in a book on C# and .NET by the same author?
See www.albahari.com/nutshell/

Table of Contents

Part 1 Getting Started

OVEIVIEW ANA CONCEPLS ... iiiiiieieiit e e e e e e e et e et s e e e e e e e eeetss s aaaaaaeeeaaeeeesnsnaeeaeeees 3
HOW Threading WOTKScoooiiiiiiii ettt e e e e e e e e eee e 5
THrEadS VS. PrOCESSEScciiiieiiii et ceeee e e ettt e e et e e e e e et e e e enaae e e eeeeaeenes 6
When t0 USE TRIEAUScoeeeiiie e e e e e e e 6
When NOt t0 USE THreadscuuiiiiiiiiieeieeei e 7

Creating and Starting TArEadsuueeeeieeiiii e 7
Passing Data to ThreadStartcocweerererreeimeriirniiieee . 8
NAMING TRIEAUS ...ttt mmr e e e e e e e et eas 9
Foreground and Background TRreadscccoooeoooaiiioiie s 10
TRIEAA PrIONILY ... e s ennees 11
EXCeption HaNAINGccoooiiii e 12

Part 2 Basic SYNChronization..................uemeeiieiiineeii e ee e e 14

SYNCNroNIZAtioN ESSENTIAISuuvuviuirtismmmmmmn e eses s sss s s s ss s ss s s s s s s s es s s s s sssssnennnsnnnnnsnnnnnes 14
2] o od (] o 15
Sleeping and SPINNINGoooiiiiiiiee e e 15
N [0 T TTaTo JF= T I Y= To PP PPPPPPPPP 16

Locking and Thread Safety ... 16
Choosing the Synchronization ODbject........cccooeeviiiiiiii 18
[N =1S] o B e 1) (] o PP 18
WHEN 10 LOCK ...ttt et e e et r e e e e e e e e e 19
Performance CONSIAEIAtIONSuiiiiieeee ettt 19
TRrEad SaAfElY ... e 20

INEEITUPTL QN ADOIT ..ot e e e 22
101 (T U] PP PP PPTT P PPUPPPPPPPIN 22
Y oo OSSR 23

TRFEAA STALEeiiiiiiiiiiiiiie e ettt e e e e s e e e e e e s s st n e e e e e e e e e esnannnenees 24

WAL HANAIES ...t a e e e e e ettt e e e e e e e e e e snnanneees 25
AULORESEIEVENT e e e e et e e e e e nnas e e e eaa e e aeanen 25
MaNUAIRESEIEVENTcoiiiiiiiiiiie e e et e e e e e et e et se e e e e e e eee e emnnssaaaseeeeaeeees 29
Mutex

SEMAPNOIE .ttt et e st s bt nbnntnnnrnrne 30

WaitAny, WaitAll and SignalANdWalt............coevvuiiiiiiiiiiiiiiiiiiiiiieiieieeieeeeeeeeeeeeees 31
SYNCNIONIZAtION CONIEXESceeiiiiiiiiiieieeeeeme e neennnes 32
REENITANCY ... ettt e e e et e e e e e e e e e e eeeeee bbb e e e eeeeeennes 34
Part 3 USING TRIreadsccovuiiiiiii e e e 36
Apartments and WINAOWS FOIMMSoooiiiiiii et 36
Specifying an Apartment MOdelceeemeuiiimiiiiiiii e 36
CONLIOLINVOKE ...t e e e e e e e e 37
BacKgroUNAWOIKET ... 37
ReaderWriterLockSIlim / ReaderWriterLOCK ... oo oo 41
LOCK FECUISIONveiiiiieeees ettt et e et e ettt e e e e s e e m e e ee e e e e nnan e e e e e s 44
Bl L (=T= 1o [N o To] 1 oo PP PPPPPP 45
ASYNCNIONOUS DEIEGALES.......civiiiiiiiiiiiiiiiiiie ittt e e e e ne e e eeeeeeeeeeeeeeeeees 46
ASYNCNIroNOUS METNOMASuuiiiiiiiiiiiit ettt eemne e e e eeeeeeeees 48
ASYNCRIONOUS EVENES ...eiiviiiiiiiiiiiiieess i s e e e e e e e e e e e aaaaaeaaaaaeaaeeasaeaeaeaeaeaanassaasaaaaaeeens 49
LI 10= PSP 49
[To= 1 IS (o = o = 2 51
Part 4 AAVanCed TOPICSuuiiiiieii e eeeee e e e e e e e e anaaas 52
Non-Blocking SYNCArONIZAtIONuuiimmmmeneiiii e 52
Memory Barriers and VOIatility ..o 52
Atomicity and INterloCKed..... ... 56
WAt QN PUISE ... et e et e e e e e e e e e ee e e e ae e a e e e e eeeeeeaenanns 58
Wait and PUISE DefiNe.........ooiiiiiiiii e 58
HOW to USe PUISE and WAtcoeiiiiscmmeee e e e 61
Pulse and Waiit GEeNEralizedcoooiiiiiiiiiiiiii e 63
Producer/Consumer QUEUEccoeeeeiiiiceeeemmme e e eeeeeeeatttiaeeeeeaeeeesaaanaeeenaaaaeassenennns 65
USING WaIL TIMEOULScoeviiiiiiiiiiiiiiee st e e e e e e e e e e e e e e e e e e neaane e e e e e e e e e e e eas 68
Races and ACKNOWIEAGEMENTcoiiviii e s 68
Simulating Wait HANAIESccooii e 72
Wait and Pulse vs. Wait HaNdIESo 73
SUSPENA ANA RESUIME ...ttt eeee ettt ettt ettt et et et eraaaeeaaeaaeaaaaaaaaaaaaaes 74
Y o1 11T TN I8] €= =T SN 75
Complications With Thread.ADOI........... . ceeemurrimiiiiiii e 76
Ending AppliCation DOMAINSuuuuuurreerimmmmmsss s e s s ssssssss e s s e es e e s sessessssnnnnnes 78
ENAING PrOCESSES .. ittt teeaeae e e e e e e e e e aaaaaaaas 80

URI: http://www.albahari.com/threading/

© 2006-2009 Joseph Albahari & O'Reilly Media, 1Adl. rights reserved

Overview and Concepts

C# supports parallel execution of code through ithuéiading. A thread is an independent
execution path, able to run simultaneously witheotihreads.

A C# program starts in a single thread creatednaatically by the CLR and operating system
(the "main” thread), and is made multi-threadedtaating additional threads. Here's a simple
example and its output:

All examples assume the following namespaces gperited, unless otherwise specified

using System;
using System.Threading;

class ThreadTest {
static void Main() {
Thread t= new Thread (WriteY);

t.Start(); /I Run WriteY on new thread
while (true) Console Write ("X"); /I Write 'X' forever
}
static void WriteY() {
while (true) Console Write ("y"); Il Write 'y' forever
}
}
XXRXXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY yy
XXXXXXKHKXXXXEXEXXXXXXXEXXXXXXXXXXXXXKXXXXXXXYYYYYYYYYYY yy
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYXXXXXXXXXXKXXXXXXXKXX XX
XXRXRXRXRXXKXKXXXXXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYY yy
YYYYYYYYYYYYYXXXXXXXXXXXXXXKKXXXXKKKXXXXEX KKK XXXK XXX XX

The main thread creates a new thread which it runs a method that repeatedly prinésdharacter
y. Simultaneously, the main thread repeatedly pthgscharactex.

The CLR assigns each thread its own memory stathaddocal variables are kept separate. In the
next example, we define a method with a local \deigthen call the method simultaneously on the
main thread and a newly created thread:

static void Main() {
new Thread (Go).Start(); /I Call Go() on a new thread
Go(); /I Call Go() on the main thread

}

static void Go() {
/I Declare and use a local variable - 'cycles'
for (int cycles = 0; cycles < 5; cycles++) Console Write ('?"),

}

279?7??7?7?7?77

A separate copy of theyclesvariable is created on each thread's memory staxckso the output is,
predictably, ten question marks.

Threads share data if they have a common refetertbe same object instance. Here's an example:

3

class ThreadTest {
bool done;

static void Main() {

ThreadTest tt = new ThreadTest(); /I Create a common instance
new Thread (tt.Go).Start();
tt.Go();
}
/I Note that Go is now an instance method
void Go() {
if ('done) { done = true ; Console .WriteLine ("Done");}
}

Because both threads c@lb() on the sam@&hreadTestinstance, they share tdenefield. This
results in "Done" being printed once instead otawi

Done

Static fields offer another way to share data betwtbreads. Here's the same example date as a
static field:

class ThreadTest {
static bool done; /I Static fields are shared between all threads

static void Main() {
new Thread (Go).Start();

Go();
}
static void Go() {
if (ldone) { done = true ; Console .WriteLine ("Done"); }
}
}

Both of these examples illustrate another key cpnedhat othread safetyor, rather, lack of it!)

The output is actually indeterminate: it's poss{aléhough unlikely) that "Done" could be printed
twice. If, however, we swap the order of stateméantheGo method, then the odds of "Done" being
printed twice go up dramatically:

static void Go() {
if (!done) { Console .WriteLine ("Done"); done = true ;}

Done
Done (usually!)

The problem is that one thread can be evaluatiad $tatement right as the other thread is executing
theWriteLine statement — before it's had a chance tdseetotrue.

The remedy is to obtain an exclusive lock whiledieg and writing to the common field. C#
provides the lock statement for just this purpose:

class ThreadSafe {
static bool done;
static object locker = new object ();

static void Main() {
new Thread (Go).Start();

Go();

}

static void Go() {
lock (locker) {
if (done){ Console .WriteLine ("Done"); done = true ;}
}

}
}

When two threads simultaneously contend a lockhigicaselocker), one thread waits, drocks

until the lock becomes available. In this casengures only one thread can enter the criticalaect

of code at a time, and "Done" will be printed jaste. Code that's protected in such a manner — from
indeterminacy in a multithreading context — is edlthread-safe.

Temporarily pausing, dslocking is an essential feature in coordinatingsymchronizinghe
activities of threads. Waiting for an exclusivekas one reason for which a thread can block.
Another is if a thread wants to pause, or Slee@fperiod of time:

Thread .Sleep (TimeSpan .FromSeconds (30)); /I Block for 30 seconds

A thread can also wait for another thread to egdsailing its Join method:

Thread t= new Thread (Go); /I Assume Go is some static method
t .Start();
t .Join(); /I Wait (block) until thread t ends

A thread, while blocked, doesn't consume CPU ressur

How Threading Works

Multithreading is managed internally bytaead schedulera function the CLR typically delegates to
the operating system. A thread scheduler ensurastate threads are allocated appropriate executio
time, and that threads that are waiting or blockéar instance — on an exclusive lock, or on user
input — do not consume CPU time.

On a single-core computer, a thread scheduler ipasfitime-slicing —apidly switching execution
between each of the active threads. This resultshioppy” behavior, such as in the very first
example, where each block of a repea¥ngr Y character corresponds to a time-slice allocated to
the thread. Under Windows, a time-slice is typicail the tens-of-milliseconds region — chosen such
as to be much larger than the CPU overhead in licgwaitching context between one thread and
another (which is typically in the few-microsecomdgion).

On a multicore or multi-processor computer, muigtdding is F
implemented with a mixture of time-slicing and gereu ree
concurrency — where different threads run code kameaously on
different CPUs. It's almost certain there willldbié some time-
slicing, because of the operating system's needrigce its own
threads — as well as those of other applications.

A thread is said to be preempted when its execugion
interrupted due to an external factor such as shunag. In
most situations, a thread has no control over vamehwhere
it's preempted.

Use LINQPad to

Threads vs. Processes interactively query
databases in LINQ instead
All threads within a single application are loglgaiontained of SQL.

within aprocess- the operating system unit in which an

application runs. Written by the author of

this ebook and packed

Threads have certain similarities to processes inftance, with more than 200

processes are typically time-sliced with other psses running on samples.

the computer in much the same way as threads watkingle C# .

application. The key difference is that processeduly isolated Full C#/VB Code Snippet
. IDE

from each other; threads share (heap) memory \liter dhreads

running in the same application. This is what makesads useful: Now with autocompletion!

one thread can be fetching data in the backgrowhide another _

thread is displaying the data as it arrives. www.lingpad.net

When to Use Threads

A common application for multithreading is perfongitime-consuming tasks in the background.
The main thread keeps running, while warker threaddoes its background job. With Windows
Forms or WPF applications, if the main threades tip performing a lengthy operation, keyboard
and mouse messages cannot be processed, and licateyppbecomes unresponsive. For this reason,
it’s worth running time-consuming tasks on workareads even if the main thread has the user stuck
on a “Processing... please wait” modal dialog in saseere the program can’'t proceed until a
particular task is complete. This ensures the egitin doesn’t get tagged as “Not Responding” by
the operating system, enticing the user to forognigl the process in frustration! The modal dialog
approach also allows for implementing a "Canceltdny since the modal form will continue to
receive events while the actual task is perfornrethe worker thread. The BackgroundWorker class
assists in just this pattern of use.

In the case of non-Ul applications, such as a WivedService, multithreading makes particular sense
when a task is potentially time-consuming becatisewaiting a response from another computer
(such as an application server, database servelient). Having a worker thread perform the task
means the instigating thread is immediately freédmther things.

Another use for multithreading is in methods thetf@rm intensive calculations. Such methods can
execute faster on a multi-processor computer ifatbekload is divided amongst multiple threads.
(One can test for the number of processors vi&theronment.ProcessorCountproperty).

A C# application can become multi-threaded in tvaysv either by explicitly creating and running
additional threads, or using a feature of the .Niamework that implicitly creates threads — such as
BackgroundWorker, thread pooling, a threading timeRemoting server, or a Web Services or
ASP.NET application. In these latter cases, onenbashoice but to embrace multithreading. A
single-threaded ASP.NET web server would not bé €@ven if such a thing were possible!
Fortunately, with stateless application serverdfithteading is usually fairly simple; one's only
concern perhaps being in providing appropriateitggknechanisms around data cached in static
variables.

When Not to Use Threads

Multithreading also comes with disadvantages. Tiggdst is that it can lead to vastly more complex
programs. Having multiple threads does not infitselate complexity; it's thimteraction between

the threadghat creates complexity. This applies whetheratrthe interaction is intentional, and can
result long development cycles, as well as an anggsiusceptibility to intermittent and non-
reproducable bugs. For this reason, it pays to keep interaction in a multi-threaded design simple
— or not use multithreading at all — unless youehaypeculiar penchant for re-writing and debugging!

Multithreading also comes with a resource and CB& im allocating and switching threads if used
excessively. In particular, when heavy disk I/@nisolved, it can be faster to have just one or two
workers thread performing tasks in sequence, rékiazer having a multitude of threads each
executing a task at the same time. Later we desbiolv to implement a Producer/Consumer queue,
which provides just this functionality.

Creating and Starting Threads

Threads are created using ff@ead class’s constructor, passing iff areadStart delegate —
indicating the method where execution should beglare’s how th& hreadStart delegate is
defined:

public delegate void ThreadStart ();

Calling Start on the thread then sets it running. The threadimmoes until its method returns, at
which point the thread ends. Here’s an exampleguisie expanded C# syntax for creating a
TheadStart delegate:

class ThreadTest {
static void Main() {
Thread t= new Thread (new ThreadStart (Go0));
t.Start(); /I Run Go() on the new thread.
Go(); /I Simultaneously run Go() in the main thread.

}

static void Go() { Console .WriteLine ("hello!");}

In this example, threadexecutes$so() — at (much) the same time the main thread &Gdi§. The
result is two near-instaiiellos:

hello!
hello!

A thread can be created more conveniently using §Hbrtcut syntax for instantiating delegates:

static void Main() {
/I No need to explicitly use ThreadStart:
Thread t= new Thread (Go);
t.Start();

}

static void Go(){...}

In this case, &hreadStart delegate is inferred automatically by the compiferother shortcut is to
use an anonymous method to start the thread:

static void Main() {
Thread t= new Thread (delegate (){ Console .Write ("Hello!");});
t.Start();

}

A thread has atsAlive property that returns true after 8art() method has been called, up until the
thread ends. A thread, once ended, cannot benteesta

Passing Data to ThreadStart

Let’s say, in the example above, we wanted to bdtstinguish the output from each thread, perhaps
by having one of the threads write in upper case.cduld achieve this by passing a flag toGue
method: but then we couldn’t use fRlereadStart delegate because it doesn’t accept arguments.
Fortunately, the .NET framework defines anothesiger of the delegate called
ParameterizedThreadStart which accepts a single object argument as fotlows

public delegate void ParameterizedThreadStart (object obj);

The previous example then looks like this:

class ThreadTest {
static void Main() {
Thread t= new Thread (Go);
t.Start (true); /I == Go (true)
Go (false);

static void Go (obj ect upperCase){

bool upper=(bool) upperCase;

Console .WriteLine (upper ? "HELLO!" : "hello!");
}

hello!
HELLO!

In this example, the compiler automatically infaiBarameterizedThreadStartdelegate because
the Go method accepts a single object argumentcdtie just as well have written:

Thread t= new Thread (new ParameterizedThreadStart (Go));
t.Start (true);

A feature of usindParameterizedThreadStartis that we must cast tludbject argument to the
desired type (in this casmol) before use. Also, there is only a single-argunvension of this
delegate.

An alternative is to use an anonymous method fcacabrdinary method as follows:

static void Main() {
Thread t= new Thread (delegate () { WriteText ("Hello"); });
t.Start();

static void WriteText (string text) { Console .WriteLine (text); }

The advantage is that the target method (in trie\8&iteText) can accept any number of
arguments, and no casting is required. Howevemmng take into account the outer-variable
semantics of anonymous methods, as is apparem iiolowing example:

static void Main() {

string text = "Before"
Thread t= new Thread (delegate () {WriteText (text); });
text = "After"
t.Start();
static void WriteText (string text) { Console .WriteLine (text); }
After

Anonymous methods open the grotesque possibiliynoftended interaction via outer
variables if they are modified by either party sdpsent to the thread starting. Intended
interaction (usually via fields) is generally catesied more than enough! Outer variables are
best treated as ready-only once thread executieidgun — unless one's willing to implement
appropriate locking semantics on both sides.

Another common system for passing data to a thiselhy givingThread an instance method rather
than a static method. The instance object’s praggecan then tell the thread what to do, as in the
following rewrite of the original example:

class ThreadTest {

bool upper;
static void Main() {
ThreadTest instancel = new ThreadTest();
instancel.upper = true ;
Thread t= new Thread (instancel.Go);
t.Start();
ThreadTest instance2 = new ThreadTest();
instance2.Go(); /I Main thread — runs with upper=false
}
void Go() { Console .WriteLine (upper ? "HELLO!" : "hello!")}

Naming Threads

A thread can be named via Keime property. This is of great benefit in debuggingwaell as being
able toConsole.WriteLine a thread’s name, Microsoft Visual Studio picksaughread’s name and
displays it in theDebug Locatiortoolbar. A thread’s name can be set at any tirnet-enly once —
attempts to subsequently change it will throw acegtion.

The application’s main thread can also be assignagime — in the following example the main
thread is accessed via tBerrentThread static property:

class ThreadNaming {
static void Main() {
Thread . Current Thr ead. Name = "main” ;
Thread worker = new Thread (Go);
worker. Nanme = "worker"
worker.Start();
Go();
}

static void Go() {
Console .WriteLine ("Hello from " + Thread .CurrentThread.Name);
}

}

Hello from main
Hello from worker

Foreground and Background Threads

By default, threads are foreground threads, meathieg keep the application alive for as long as any
one of them is running. C# also supports backgrahrehds, which don't keep the application alive
on their own — terminating immediately once alleiground threads have ended.

Changing a thread from foreground to backgroundfdehange its priority or status within
the CPU scheduler in any way.

A thread'dsBackground property controls its background status, as ifadhewing example:

class PriorityTest {
static void Main (string []args){

Thread worker = new Thread (delegate (){ Console .ReadLine(); });
if (args.Length > 0) worker. | sBackground = true ;
worker.Start();
}
}

If the program is called with no arguments, thekeoithread runs in its default foreground mode,
and will wait on theReadLine statement, waiting for the user to Bitter. Meanwhile, the main
thread exits, but the application keeps runningbsee a foreground thread is still alive.

If on the other hand an argument is passedam(), the worker is assigned background status, and
the program exits almost immediately as the maieath ends — terminating tReadLine.

When a background thread terminates in this mammgrfjnally blocks are circumvented. As
circumventindfinally code is generally undesirable, it's good pradtoeexplicitly wait for any
background worker threads to finish before exitingapplication — perhaps with a timeout (this is
achieved by calling Thread.Join). If for some reasasenegade worker thread never finishes, one can
then attempt to abort it, and if that fails, abamtlze thread, allowing it to die with the process
(logging the conundrum at this stage would alsoerssdnse!)

10

Having worker threads as background threads canlibeeficial, for the very reason that it's always
possible to have the last say when it comes tangritie application. Consider the alternative —
foreground thread that won't die — preventing thgiaation from exiting. An abandoned foreground
worker thread is particularly insidious with a Wawils Forms application, because the application
will appear to exit when the main thread endsdast to the user) but its process will remain mgni
In the Windows Task Manager, it will have disappeairom theApplicationstab, although its
executable filename still be visible in the Proesssb. Unless the user explicitly locates and ends
the task, it will continue to consume resources @arthaps prevent a new instance of the application
from starting or functioning properly.

A common cause for an application failing to exigerly is the presence of “forgotten”
foregrounds threads.

Thread Priority

A thread’sPriority property determines how much execution time i gelative to other active
threads in the same process, on the following scale

public enum ThreadPriority
{ Lowest, BelowNormal, Normal, AboveNormal, Highes t}

This becomes relevant only when multiple threadssanultaneously active.

Setting a thread’s priority to high doesn’t meacah perform real-time work, because it's still
limited by the application’s process priority. Terform real-time work, th€rocessclass in
System.Diagnosticsnust also be used to elevate the process prasifpllows (I didn't tell you how
to do this):

Process .GetCurrentProcess().PriorityClass =
ProcessPriorityClass .High;

ProcessPriorityClass.Highis actually one notch short of the highest propessity: Realtime.

Setting one's process priorityRealtime instructs the operating system that you never want
process to be preempted. If your program enteexaitental infinite loop you can expect even the
operating system to be locked out. Nothing shothefpower button will rescue you! For this reason,
High is generally considered the highest usable prquéssty.

If the real-time application has a user interfacean be undesirable to elevate the process pyiori
because screen updates will be given excessivetitilJ- slowing the entire computer, particularly
if the Ul is complex. (Although at the time of vinigj, the Internet telephony program Skype gets
away with doing just this, perhaps because itssUWairly simple). Lowering the main thread’s
priority — in conjunction with raising the procesgriority — ensures the real-time thread doesgtt g
preempted by screen redraws, but doesn’t prevertdmputer from slowing, because the operating
system will still allocate excessive CPU to thegatss as a whole. The ideal solution is to have the
real-time work and user interface in separate @& (with different priorities), communicating via
Remoting or shared memory. Shared memory requitegdking the Win32 API (web-search
CreateFileMappingandMapViewOfFilg.

11

Exception Handling

Any try/catch/finally blocks in scope when a thread is created are otlegance once the thread
starts executing. Consider the following program:

public static void Main() {

try
new Thread (Go).Start();

catch (Exception ex) {
/I We'll never get here!
Console .WriteLine ("Exception!");

static void Go() { throw null ~ ;}

}

Thetry/catch statement in this example is effectively uselass, the newly created thread will be
encumbered with an unhandiddIIReferenceException This behavior makes sense when you
consider a thread has an independent execution Pagtremedy is for thread entry methods to have
their own exception handlers:

public static void Main() {
new Thread (Go).Start();
}
static void Go() {
try {
throw null /I this exception will get caught below
}

catch (Exception ex) {
Typically log the exception, and/or signal another thread
that we've come unstuck

)

From .NET 2.0 onwards, an unhandled exception grttaread shuts down the whole application,
meaning ignoring the exception is generally nobption. Hence #y/catch block is required in

every thread entry method — at least in productigplications — in order to avoid unwanted
application shutdown in case of an unhandled ei@mepThis can be somewhat cumbersome —
particularly for Windows Forms programmers, who coonly use the "global” exception handler, as
follows:

static class Program {
static void Main() {
Application. ThreadException += HandleError;
Application.Run (new MainForm());

}

static void HandleError (object sender,
ThreadExceptionEventArgs e){

Log exception, then either exit the app or continue...

12

The Application. ThreadException event fires when an exception is thrown from cibdg was
ultimately called as a result of a Windows mesgégreexample, a keyboard, mouse or "paint"
message) — in short, nearly all code in a typicaldbdws Forms application. While this works
perfectly, it lulls one into a false sense of seégur that all exceptions will be caught by the ttah
exception handler. Exceptions thrown on workerallseare a good example of exceptions not caught
by Application.ThreadException (the code inside thain method is another — including the main
form's constructor, which executes before the Wivalmessage loop begins).

The .NET framework provides a lower-level eventdtobal exception handling:
AppDomain.UnhandledException This event fires when there's an unhandled ekaept any
thread, and in any type of application (with orheitit a user interface). However, while it offers a
good last-resort mechanism for logging untrappexptions, it provides no means of preventing the
application from shutting down — and no means fgpsess the .NET unhandled exception dialog.

In production applications, explicit exception hkmgl is required on all thread entry methods.
One can cut the work by using a wrapper or helfzsdo perform the job, such as
BackgroundWorker (discussed in Part 3).

13

Synch

PART 2

BASIC SYNCHRONIZATION

ronization Essentials

The following summarize the .NET tools for coording or synchronizing the actions of threads:

Simple Blocking Methods

Construct | Purpose
Sleep Blocks for a given time period.
Join Waits for another thread to finig

h.

Locking Constructs

Cross-
Construct | Purpose Process? Speed
lock Ensures just one thread can access a resaursegtion of code| no fast
Ensures just one thread can access a resour@stmmsof code.
Mutex Can be used to prevent multiple instances of alicapipn from |yes moderate
starting.
Ensures not more than a specified number of threadsccess p
Semaphore ; yes moderat¢
resource, or section of code.
Signaling Constructs
Cross-
Construct Purpose Process? Speed
EventWaitHandld \lows a thread to wait until it receives a S|gnalyes moderate
from another thread.
Wait and Pulse* Allowg a t_hread to wait until a custom blocking no moderate
condition is met.
Non-Blocking Synchronization Constructs*
Cross-
Construct | Purpose Process? Speed
Interlocked*| To perform simple non-blocking atomic operations. yes (assumingVe"y fast
volatile* To allow safe non-blocking access to individualdie | Shared verv fast
outside of a lock. memory) y
*Covered in Part 4

14

Blocking

When a thread waits or pauses as a result of tisengonstructs listed in the tables above, itd &ai
beblocked Once blocked, a thread immediately relinquiskeallocation of CPU time, adds
WaitSleepJointo its ThreadState property, and doesn’t get hedaled until unblocked. Unblocking
happens in one of four ways (the computer's powtpib doesn't count!):

« by the blocking condition being satisfied

« by the operation timing out (if a timeout is spesd
« by being interrupted via Thread.Interrupt

« by being aborted via Thread.Abort

A thread is not deemed blocked if its executiopassed via the (deprecated) Suspend method.

Sleeping and Spinning
Calling Thread.Sleepblocks the current thread for the given time par until interrupted):

static void Main() {

Thread .Sleep (0); /I relinquish CPU time-slice
Thread .Sleep (1000); /I sleep for 1000 ms
Thread .Sleep (TimeSpan .FromHours (1)); /I sleep for 1 hour

Thread .Sleep (Timeout .Infinite); /I sleep until interrupted

}

More preciselyThread.Sleeprelinquishes the CPU, requesting that the threambi re-scheduled
until the given time period has elapsed. Threag®&®) relinquishes the CPU just long enough to
allow any other active threads present in a tinerg queue (should there be one) to be executed.

Thread.Sleepis unique amongst the blocking methods in thapesnds Windows message
pumping within a Windows Forms application, or C@Rvironment on a thread for which the
single-threaded apartment model is used. This li¢tlefconsequence with Windows Forms
applications, in that any lengthy blocking opematam the main Ul thread will make the
application unresponsive — and is hence generatlidad — regardless of the whether or not
message pumping is "technically" suspended. That#iin is more complex in a legacy COM
hosting environment, where it can sometimes bealasito sleep while keeping message
pumping alive. Microsoft's Chris Brumme discusses &t length in his web log (search:
'‘COM "Chris Brumme").

The Thread class also provideSginWait method, which doesn’t relinquish any CPU timeteas
looping the CPU — keeping it “uselessly busy” foe given number of iterations. 50 iterations might
equate to a pause of around a microsecond, althibigyjdepends on CPU speed and load.
Technically,SpinWait is not a blocking method: a spin-waiting threaésloot have @hreadState

of WaitSleepJoinand can't be prematurelgterrupt ed by another threa@pinWait is rarely used

— its primary purpose being to wait on a resouhne¢’s expected to be ready very soon (inside maybe
a microsecond) without callingleepand wasting CPU time by forcing a thread changevéver

this technique is advantageous only on multi-preasesomputers: on single-processor computers,
there’s no opportunity for a resource’s statusiange until the spinning thread ends its time-slice
which defeats the purpose of spinning to begin wiitnd callingSpinWait often or for long periods
of time itself is wasteful on CPU time.

15

Blocking vs. Spinning

A thread can wait for a certain condition by expllycspinning using a polling loop, for example:
while (!proceed);

or:

while (DateTime .Now < nextStartTime);

This is very wasteful on CPU time: as far as thd&R@nd operating system is concerned, the thread is
performing an important calculation, and so gdtscated resources accordingly! A thread looping in
this state is not counted as blocked, unlike aathsgaiting on an EventWaitHandle (the construct
usually employed for such signaling tasks).

A variation that's sometimes used is a hybrid betwidocking and spinning:
while (!proceed) Thread .Sleep (x); /I "Spin-Sleeping!"

The largerx, the more CPU-efficient this is; the trade-offrimein increased latency. Anything above
20ms incurs a negligible overhead — unless theitiondn the while-loop is particularly complex.

Except for the slight latency, this combinatiorspifnning and sleeping can work quite well (subject
to concurrency issues on theceedflag, discussed in Part 4). Perhaps its biggesiughen a
programmer has given up on getting a more compgrabng construct to work!

Joining a Thread

You can block until another thread ends by calllom:

class JoinDemo {
static void Main() {
Thread t= new Thread (delegate (){ Console .ReadLine();});
t.Start();
t. Joi n(); /I Wait until thread t finishes
Console .WriteLine ("Thread t's ReadLine complete!");
}

}

TheJoin method also accepts a timeout argument — in @dtieds, or as BimeSpan, returning
false if theJoin timed out rather than found the end of the thr@aph with a timeout functions rather
like Sleep— in fact the following two lines of code are akhaentical:

Thread .Sleep (1000);
Thread .CurrentThread.Join (1000);

(Their difference is apparent only in single-thredépartment applications with COM
interoperability, and stems from the subtletiegimdows message pumping semantics described
previously: Join keeps message pumping alive witdleked; Sleep suspends message pumping).

Locking and Thread Safety

Locking enforces exclusive access, and is usedgore only one thread can enter particular sections
of code at a time. For example, consider followdiass:

16

class ThreadUnsafe {
static int vall, val2;

static void Go() {
if (val2 1= 0) Console .WriteLine (vall / val2);
val2 = 0;
}
}

This is not thread-safe: Go was called by two threads simultaneously it wdwédpossible to get a
division by zero error — becaugal2 could be set to zero in one thread right as therdhread was
in between executing the statement an@onsole.WriteLine.

Here’s howlock can fix the problem:

class ThreadSafe {
static object locker = new object ();
static int vall, val2;

static void Go() {
| ock (locker) {
if (val2!=0) Console .WriteLine (vall / val2);
val2 = 0;
}
}
}

Only one thread can lock the synchronizing objecthis casdocker) at a time, and any contending
threads are blocked until the lock is releasethdfe than one thread contends the lock, they are
queued — on a “ready queue” and granted the lockfirst-come, first-served basis as it becomes
available. Exclusive locks are sometimes said forea serialized access to whatever's protected by
the lock, because one thread's access cannot pwégttathat of another. In this case, we're pratect
the logic inside th&o method, as well as the fielgall andval2.

A thread blocked while awaiting a contended lock && hreadState diVaitSleepJoin Later we
discuss how a thread blocked in this state camiwibly released via another thread calling its
Interrupt or Abort method. This is a fairly heawyty technique that might typically be used in
ending a worker thread.

C#'slock statement is in fact a syntactic shortcut forlatoghe method#/onitor.Enter and
Monitor.Exit , within a try-finally block. Here’s what's actuglhappening within th&o method of
the previous example:

Moni t or. Ent er (locker);

try {
if (val2!=0) Console .WriteLine (vall / val2);

val2 = 0;

}
finally { Monitor. Exit (locker);}

Calling Monitor.Exit without first callingMonitor.Enter on the same object throws an exception.

Monitor also provides aryEnter method allows a timeout to be specified — eithanilliseconds

or as alimeSpan The method then returns true — if a lock wasiobth— or false — if no lock was
obtained because the method timed duyEnter can also be called with no argument, which "tests
the lock, timing out immediately if the lock calvé obtained right away.

17

Choosing the Synchronization Object

Any object visible to each of the partaking threads be used as a synchronizing object, subject to
one hard rule: it must be a reference type. I8 &lighly recommended that the synchronizing object
be privately scoped to the class (i.e. a privaseaince field) to prevent an unintentional inteacti

from external code locking the same object. Sulifetiiese rules, the synchronizing object can
double as the object it's protecting, such as thigtist field below:

class ThreadSafe ({
List <string > list= new List <string >();

void Test() {
lock (list) {
list.Add (“ltem 1"),

A dedicated field is commonly used (sucHaker, in the example prior), because it allows precise
control over the scope and granularity of the lag&ing the object or type itself as a synchronarati
object, i.e.:

lock (this){ ... }
or:

lock (typeof (Widget)){...} // For protecting access to st atics

is discouraged because it potentially offers pubticpe to the synchronization object.

Locking doesn't restrict access to the synchrogipinject itself in any way. In other words,
x.ToString() will not block because another thread has cadieki(x) — both threads must call
lock(x) in order for blocking to occur.

Nested Locking

A thread can repeatedly lock the same object, reitlaemultiple calls tdVionitor.Enter , or via
nestedock statements. The object is then unlocked when@sponding number dflonitor.Exit
statements have executed, or the outerhocktstatement has exited. This allows for the mosinaht
semantics when one method calls another as follows:

static object x= new object ();

static void Main() {
lock (x){
Console .WriteLine ("l have the lock");
Nest();
Console .WriteLine ("| still have the lock");
}

Here the lock is released.

}
static void Nest() {
lock (x){

}
Released the lock? Not quite!

}
18

A thread can block only on the first, or outermlosk.

When to Lock

As a basic rule, any field accessible to multipieeads should be read and written within a loclerEv
in the simplest case — an assignment operationsomgée field — one must consider synchronization.
In the following class, neither thecrement nor theAssign method is thread-safe:

class ThreadUnsafe {
static int x;
static void Increment() { x++; }
static void Assign() {x=123;}
}

Here are thread-safe versiondrfrement andAssign

class ThreadUnsafe {
static object locker = new object ();
static int x;

static void Increment() { lock (locker) x++;}
static void Assign() { lock (locker) x =123;}
}

As an alternative to locking, one can use a norkdhg synchronization construct in these simple
situations. This is discussed in Part 4 (along Withreasons that such statements require
synchronization).

Locking and Atomicity

If a group of variables are always read and writtghin the same lock, then one can say the
variables are read and writtatomically Let's suppose fieldsandy are only ever read or assigned
within alock on objectocker:

lock (locker) { if (x!=0)y/=x}

One can say andy are accessed atomically, because the code bloclothedividedor preempted
by the actions of another thread in such a waywiiathangex ory andinvalidate its outcome
You'll never get a division-by-zero error, provigix andy are always accessed within this same
exclusive lock.

Performance Considerations

Locking itself is very fast: a lock is typically tined in tens of nanoseconds assuming no blocking.
If blocking occurs, the consequential task-switghimoves the overhead closer to the microseconds-
region, although it may be milliseconds beforettiread's actually rescheduled. This, in turn, is
dwarfed by the hours of overhead — or overtimeat ¢ln result from not locking when you should
have!

Locking can have adverse effects if improperly us@spoverished concurrency, deadlocks and lock
races. Impoverished concurrency occurs when todroade is placed in a lock statement, causing
other threads to block unnecessarily. A deadloekhien two threads each wait for a lock held by the
other, and so neither can proceed. A lock race drapmwhen it's possible for either of two threads to
obtain a lock first, the program breaking if therting” thread wins.

19

Deadlocks are most commonly a syndrome of too nsgnghronizing
objects. A good rule is to start on the side ofilng¥ewer objects on
which to lock, increasing the locking granularithen a plausible
scenario involving excessive blocking arises.

Thread Safety

Thread-safe code is code which has no indetermimaitye face of
any multithreading scenario. Thread-safety is addgrimarily with
locking, and by reducing the possibilities for natetion between
threads.

« A method which is thread-safe in any scenario ieda
reentrant. General-purpose types are rarely thsaéelin
their entirety, for the following reasons:the deprhent
burden in full thread-safety can be significanttioalarly if
a type has many fields (each field is a potential f
interaction in an arbitrarily multi-threaded cortjex

+ thread-safety can entail a performance cost (payabpart,
whether or not the type is actually used by mudtighireads)

+ athread-safe type does not necessarily make tdgegm
using it thread-safe — and sometimes the work reabin
the latter can make the former redundant.

Thread-safety is hence usually implemented justrevhianeeds to be,
in order to handle a specific multithreading scenar

There are, however, a few ways to "cheat" and karge and complex
classes run safely in a multi-threaded environn@ne is to sacrifice
granularity by wrapping large sections of code ereaccess to an
entire object — around an exclusive lock — enf@aarialized access
at a high level. This tactic is also crucial iroaling a thread-unsafe
object to be used within thread-safe code — andlid providing the

same exclusive lock is used to protect accesd pyaperties, methods

and fields on the thread-unsafe object.

Get the whole book:

Introducing C#

C# Language Basics
Creating Types in C#
Advanced C# Features
Framework Fundamentals
Collections

LINQ Queries

LINQ Operators

LINQ to XML

Other XML Technologies
Disposal & Garbage Collection
Streams and 1/O
Networking

Serialization

Assemblies

Reflection & Metadata
Threading

Asynchronous Methods
Application Domains
Integrating with Native DLLs
Diagnostics

Regular Expressions

C# 3.0

A Desktop Quick Reference

O'REILLY"

http:/www .albahari.com/nutshell

thread-safety — typically using exclusive locks.

Primitive types aside, very few .NET framework typehen instantiated are thread-safe for
anything more than concurrent read-only accessonts is on the developer to superimpose

Another way to cheat is to minimize thread intemcby minimizing shared data. This is an
excellent approach and is used implicitly in "diede" middle-tier application and web page servers.
Since multiple client requests can arrive simultarsty, each request comes in on its own thread (by
virtue of the ASP.NET, Web Services or Remotindndectures), and this means the methods they
call must be thread-safe. A stateless design (pofoit reasons of scalability) intrinsically limitise
possibility of interaction, since classes are uaablpersist data between each request. Thread
interaction is then limited just to static fieldseomay choose to create — perhaps for the purpdses

20

caching commonly used data in memory — and in pingiinfrastructure services such as
authentication and auditing.

Thread-Safety and .NET Framework Types

Locking can be used to convert thread-unsafe audethread-safe code. A good example is with the
.NET framework — nearly all of its non-primitiveptgs are not thread safe when instantiated, and yet
they can be used in multi-threaded code if all sgde any given object is protected via a lock.e'ser
an example, where two threads simultaneously &uasito the samiest collection, then enumerate
the list:

class ThreadSafe ({
static ~ List <string > list= new List <string >();

static void Main() {
new Thread (Addltems).Start();
new Thread (Addltems).Start();

}

static void AddIltems() {
for (int i=0;i<100;i++)
lock (list)
list. Add ("ltem" + list.Count);

string [] items;
lock (list) items = list. ToArray();
foreach (string s in items) Console .WriteLine (s);

}
}

In this case, we're locking on thst object itself, which is fine in this simple sceivaif we had two
interrelated lists, however, we would need to lapkn a common object — perhaps a separate field, if
neither list presented itself as the obvious caatdid

Enumerating .NET collections is also thread-ungatbe sense that an exception is thrown if another
thread alters the list during enumeration. Rathantocking for the duration of enumeration, irsthi
example, we first copy the items to an array. Bwaids holding the lock excessively if what we're
doing during enumeration is potentially time-congugn

Here's an interesting supposition: imagine ifltle class was, indeed, thread-safe. What would it
solve? Potentially, very little! To illustrate, lesay we wanted to add an item to our hypothetical
thread-safe list, as follows:

if (!ImyList.Contains (newltem)) myList.Add (newltem);

Whether or not the list was thread-safe, this stat# is certainly not! The whol& statement would
have to be wrapped in a lock — to prevent preemptidetween testing for containership and adding
the new item. This same lock would then need tadsel everywhere we modified that list. For
instance, the following statement would also neeldet wrapped — in the identical lock:

myList.Clear();

to ensure it did not preempt the former statemardgther words, we would have to lock almost
exactly as with our thread-unsafe collection clasBeiilt-in thread safety, then, can actually be a
waste of time!

One could argue this point when writing custom corgnts — why build in thread-safety when it can
easily end up being redundant?

21

There is a counter-argument: wrapping an objecairat@ custom lock works only if all concurrent
threads are aware of, and use, the lock — whichmoape the case if the object is widely scopea Th
worst scenario crops up with static members intdiptlype. For instance, imagine the static propert
on theDateTime struct,DateTime.Now, was not thread-safe, and that two concurrens callild

result in garbled output or an exception. The avdy to remedy this with external locking might be
to lock the type itself 4ock(typeof(DateTime))— around calls t®ateTime.Now— which would

work only if all programmers agreed to do this. Ahts is unlikely, given that locking a type is
considered by many, a Bad Thing!

For this reason, static members onBfaeTime struct are guaranteed to be thread-safe. This is a
common pattern throughout the .NET framework -istaembers are thread-safe, while instance

members are not. Following this pattern also makese when writing custom types, so as not to
create impossible thread-safety conundrums!

When writing components for public consumptionpadpolicy is to program at least such as
not to preclude thread-safety. This means beinticpéarly careful with static members —
whether used internally or exposed publicly.

Interrupt and Abort

A blocked thread can be released prematurely irobthwo ways:
+ via Thread.Interrupt
+ via Thread.Abort

This must happen via the activities of anotherdtrehe waiting thread is powerless to do anything
in its blocked state.

Interrupt

CallingInterrupt on a blocked thread forcibly releases it, thronarithreadInterruptedException,
as follows:

class Program {
static void Main() {
Thread t=new Thread (delegate () {

try {
Thread .Sleep (Timeout .Infinite);

}
catch (ThreadInterruptedException) {
Console .Write ("Forcibly ");
Console .WriteLine ("Woken!");
D
t.Start();
t. I nterrupt ();
}
}
Forcibly Woken!

22

Interrupting a thread only releases it from itsrent (or next) wait: it does not cause the threaend
(unless, of course, thghreadinterruptedException is unhandled!)

If Interrupt is called on a thread that’s not blocked, theatireontinues executing until it next
blocks, at which point &hreadInterruptedException is thrown. This avoids the need for the
following test:

if ((worker.ThreadState & ThreadState .WaitSleepJoin) > 0)
worker.Interrupt();

which is not thread-safe because of the possilfityeing preempted in between thestatement and
worker.Interrupt .

Interrupting a thread arbitrarily is dangerous, bwer, because any framework or third-party
methods in the calling stack could unexpectedlgirecthe interrupt rather than your intended code.
All it would take is for the thread to block brigfbn a simple lock or synchronization resource, and
any pending interruption would kick in. If the methwasn't designed to be interrupted (with
appropriate cleanup code in finally blocks) objexiald be left in an unusable state, or resources
incompletely released.

Interrupting a thread is safe when you know exaetigre the thread is. Later we cover signaling
constructs, which provide just such a means.

Abort

A blocked thread can also be forcibly releasedtsiAbort method. This has an effect similar to
calling Interrupt , except that &hreadAbortException is thrown instead of a
ThreadInterruptedException. Furthermore, the exception will be re-thrownhat €nd of the catch
block (in an attempt to terminate the thread favd)aunlessThread.ResetAbortis called within the
catch block. In the interim, the thread hashaeadState of AbortRequested

The big difference, though, betwekrerrupt andAbort, is what happens when it's called on a
thread that is not blocked. Whileterrupt waits until the thread next blocks before doingthimg,
Abort throws an exception on the thread right whereek&cuting — maybe not even in your code.
Aborting a non-blocked thread can have significmtsequences, the details of which are explored
in the later section "Aborting Threads".

23

Thread State

WaitSleepJoin

A

Abort
Thread Thread
Blocks Unblocks
Y
i Abort
Unstarted Start Running =i et
- Requested
) ResetAbort
| in
Thread Thread | theory
| only!

Stopped

One can query a thread's execution status vighitsadState property. Figure 1 shows one "layer" of
the ThreadState enumerationThreadStateis horribly designed, in that it combines thresyérs" of
state using bitwise flags, the members within daghr being themselves mutually exclusive. Here
are all three layers:

Figure 1: Thread State Diagram

- the running / blocking / aborting status (as shawhigure 1)
- the background/foreground statd$feadState.Background

- the progress towards suspension via the depre8atgaend method
(ThreadState.SuspendRequestedndThreadState.Suspendeq

In total then,ThreadStateis a bitwise combination of zero or one membessfeach layer! Here
are some samplehreadStates:

Unstarted

Running

WaitSleepJoin

Background, Unstarted

SuspendRequested, Background, WaitSleepJoin

(The enumeration has two members that are nevdr asteast in the current CLR implementation:
StopRequestecandAborted.)

To complicate matters furthéFhreadState.Runninghas an underlying value of 0, so the following
test does not work:

if ((t.ThreadState & ThreadState .Running) > 0) ...

and one must instead test for a running threadblsion, or alternatively, use the threddAlive
property.IsAlive, however, might not be what you want. It retumue tif the thread's blocked or
suspended (the only time it returns false is befloeethread has started, and after it has ended).

Assuming one steers clear of the deprec8tegshendandResumemethods, one can write a helper
method that eliminates all but members of the fagér, allowing simple equality tests to be

24

performed. A thread's background status can bengatéandependently via its IsBackground
property, so only the first layer actually has uséfformation:

public static ThreadState SimpleThreadState (ThreadState ts)

{
return ts& (ThreadState .Aborted | ThreadState .AbortRequested |
ThreadState .Stopped | ThreadState .Unstarted |
ThreadState .WaitSleepJoin);
}

ThreadStateis invaluable for debugging or profiling. It's pbosuited, however, to coordinating
multiple threads, because no mechanism exists lighvdme can test BhreadState and then act
upon that information, without tHEhreadState potentially changing in the interim.

Wait Handles

The lock statement (akdonitor.Enter / Monitor.Exit) is one example of a thread synchronization
construct. Whildock is suitable for enforcing exclusive access toréiq@dar resource or section of
code, there are some synchronization tasks fortwiigcclumsy or inadequate, such as signaling a
waiting worker thread to begin a task.

The Win32 API has a richer set of synchronizationstructs, and these are exposed in the .NET
framework via the&eventWaitHandle, Mutex andSemaphoreclasses. Some are more useful than
others: the Mutex class, for instance, mostly desilblp on what's provided byck, while
EventWaitHandle provides unique signaling functionality.

All three classes are based on the absthitHandle class, although behaviorally, they are quite
different. One of the things they do all have imeoon is that they can, optionally, be "named",
allowing them to work across all operating systencpsses, rather than across just the threads in th
current process.

EventWaitHandle has two subclasses: AutoResetEvent and ManualRes#t(neither being
related to a C# event or delegate). Both classegedall their functionality from their base class:
their only difference being that they call the bealsess's constructor with a different argument.

In terms of performance, the overhead with all Whhdles typically runs in the few-microseconds
region. Rarely is this of consequence in the cdritewhich they are used.

AutoResetEventis the most useful of th&/aitHandle classes, and is a staple synchronizatio
construct, along with thieck statement

AutoResetEvent

An AutoResetEventis much like a ticket turnstile: inserting a tickets exactly one person through.
The "auto” in the class's name refers to the faatdn open turnstile automatically closes or ‘tsdse
after someone is let through. A thread waits, ocks, at the turnstile by callinyaitOne (wait at

this "one" turnstile until it opens) and a ticketimserted by calling th8etmethod. If a number of
threads callWaitOne, a queue builds up behind the turnstile. A ticket come from any thread — in
other words, any (unblocked) thread with accesbdédutoResetEventobject can calbeton it to
release one blocked thread.

25

If Setis called when no thread is waiting, the handigsbpen for as long as it takes until some
thread to calWaitOne. This behavior helps avoid a race between a threadihg for the turnstile,
and a thread inserting a ticket ("oops, insertedittket a microsecond too soon, bad luck, nowllyou'
have to wait indefinitely!") However calling Sefpeatedly on a turnstile at which no-one is waiting
doesn't allow a whole party through when they arronly the next single person is let through and
the extra tickets are "wasted".

WaitOne accepts an optional timeout parameter — the mdtredreturns false if the wait ended
because of a timeout rather than obtaining theaiviaitOne can also be instructed to exit the
current synchronization context for the durationhaf wait (if an automatic locking regime is in use
in order to prevent excessive blocking.

A Resetmethod is also provided that closes the turnstid@ould it be open, without any waiting or
blocking.

An AutoResetEventcan be created in one of two ways. The firstasita constructor:

EventWaitHandle wh = new AutoResetEvent (false);

If the boolean argument is true, the handk&smethod is called automatically, immediately after
construction. The other method of instantiatat®wuia its base clasEventWaitHandle:

EventWaitHandle ~wh = new EventWaitHandle (false
EventResetMode .Auto);

EventWaitHandle's constructor also allows a Manaa#iREvent to be created (by specifying
EventResetMode.Manua).

One should calCloseon a Wait Handle to release operating system resswnce it's no longer
required. However, if a Wait Handle is going toused for the life of an application (as in most of
the examples in this section), one can be lazyoamtlithis step as it will be taken care of
automatically during application domain tear-down.

In the following example, a thread is started whobes simply to wait until signaled by another
thread:

class BasicWaitHandle {
static Event Wai t Handl e wh = new Aut oReset Event (false);

static void Main() {
new Thread (Waiter).Start();
Thread .Sleep (1000); /I Wait for some time...

wh. Set (); /I OK - wake it up

}

static void Waiter() {

Console .WriteLine ("Waiting..." ;

wh. Wit One(); /I Wait for notification
Console .WriteLine ("Notified");

}

}

Waiting... (pause) Notified.

Creating a Cross-Process EventWaitHandle

EventWaitHandle's constructor also allows a "namefi/entWaitHandle to be created — capable of
operating across multiple processes. The namen@gia string — and can be any value that doesn't
unintentionally conflict with someone else’s! lethame is already in use on the computer, oneagets

26

reference to the same underlyiBgentWaitHandle, otherwise the operating system creates a new
one. Here's an example:

EventWaitHandle wh = new EventWaitHandle (false , EventResetMode .Auto,
"MyCompany.MyApp.SomeName");

If two applications each ran this code, they wdagdable to signal each other: the wait handle would
work across all threads in both processes.

Acknowledgement

Supposing we wish to perform tasks in the backgilauithout the overhead of creating a new thread
each time we get a task. We can achieve this wsihgle worker thread that continually loops —
waiting for a task, executing it, and then waitfiogthe next task. This is a common multithreading
scenario. As well as cutting the overhead in cnegiiireads, task execution is serialized, elimingati
the potential for unwanted interaction between ipl@ltworkers and excessive resource consumption.

We have to decide what to do, however, if the woskaready busy with previous task when a new
task comes along. Suppose in this situation we s#ntmblock the caller until the previous task is
complete. Such a system can be implemented usméttoResetEventobjects: a "ready"
AutoResetEventthat'sSetby the worker when it's ready, and a "daitoResetEventthat'sSet by

the calling thread when there's a new task. Irei@nple below, a simple string field is used to
describe the task (declared using the volatile lkegvio ensure both threads always see the same
version):

class AcknowledgedWaitHandle {

static EventWaitHandle ready= new AutoResetEvent (false);
static EventWaitHandle go= new AutoResetEvent (false);
static volatile string task;

static void Main() {
new Thread (Work).Start();

/I Signal the worker 5 times
for (int i=1;i<=5;i++){

ready. Wai t One(); /I First wait until worker is ready
task = "a" .PadRight (i, 'h"), /I Assign a task
go. Set (); /I Tell worker to go!
}
/I Tell the worker to end using a null-task
ready. Wai t One(); task = null ; go. Set ();
}

static void Work() {
while (true){

ready. Set (); /I Indicate that we're ready
go. Wi t One(); /I Wait to be kicked off...
if (task == null) return ; /I Gracefully exit
Console .WriteLine (task);
}
}
}
ah
ahh
ahhh
ahhhh

27

Notice that we assign a null task to signal thekeothread to exit. Calling Interrupt or Abort dret
worker's thread in this case would work equallylwgbroviding we first calledeady.WaitOne.
This is because after callimgady.WaitOne we can be certain on the location of the workeither
on or just before thgo.WaitOne statement — and thereby avoid the complicationstefrupting
arbitrary code. Callingnterrupt or Abort would also also require that we caught the coremtipl
exception in the worker.

Producer/Consumer Queue

Another common threading scenario is to have adraciknd worker process tasks from a queue. This
is called a Producer/Consumer queue: the produncpreeies tasks; the consumer dequeues tasks on a
worker thread. It's rather like the previous exampkcept that the caller doesn't get blockedeif th
worker's already busy with a task.

A Producer/Consumer queue is scaleable, in thaipteutonsumers can be created — each servicing
the same queue, but on a separate thread. Thigoisdhway to take advantage of multi-processor
systems while still restricting the number of warkeo as to avoid the pitfalls of unbounded
concurrent threads (excessive context switchingrasdurce contention).

In the example below, a singdeitoResetEventis used to signal the worker, which waits only if
runs out of tasks (when the queue is empty). A gerellection class is used for the queue, whose
access must be protected by a lock to ensure tisafaty. The worker is ended by enqueing a null
task:

using System;
using System.Threading;
using System.Collections.Generic;

class ProducerConsumerQueue : |IDisposable {
EventWaitHandle ~ wh = new AutoResetEvent (false);
Thread worker;
object locker = new object ();
Queue<string > tasks = new Queue<string >();

public ProducerConsumerQueue() {
worker = new Thread (Work);
worker.Start();

public void EnqueueTask (string task) {
lock (locker) tasks.Enqueue (task);

wh. Set ();

}
public void Dispose() {
EnqueueTask (null); /I Signal the consumer to exit.
worker.Join(); /I Wait for the consumer's thread to finish.
wh. C ose(); /I Release any OS resources.

}

void Work() {

while (true){

string task = null ;

lock (locker)

if (tasks.Count > 0) {
task = tasks.Dequeue();
if (task == null) return

}

if (task!= null) {

28

Console .WriteLine ("Performing task: " + task);
Thread .Sleep (1000); /I simulate work...

}
else
wh. Wai t One(); /I No more tasks - wait for a signal
}
}
}

Here's a main method to test the queue:

class Test {
static void Main() {

using (ProducerConsumerQueue ¢g= new ProducerConsumerQueue ()){
g.EnqueueTask ("Hello");
for (int i=0;i<10;i++) q.EnqueueTask ("Say " +i);
g.EnqueueTask ("Goodbye!");
/I Exiting the using statement calls q's Dispose me thod, which
/I enqueues a null task and waits until the consume r finishes.
}
}

Performing task: Hello
Performing task: Say 1
Performing task: Say 2
Performing task: Say 3

F.’.erforming task: Say 9
Goodbye!

Note that in this example we explicitly close tha¥\Handle when ouProducerConsumerQueue
is disposed — since we could potentially createdesiroy many instances of this class within tfee i
of the application.

ManualResetEvent

A ManualResetEventis a variation on AutoResetEvent. It differs imttit doesn't automatically

reset after a thread is let through owaitOne call, and so functions like a gate: callifgtopens

the gate, allowing any number of threads that Wat@t the gate through; calliResetcloses the
gate, causing, potentially, a queue of waitersctumulate until its next opened.

One could simulate this functionality with a boaiégateOpen" field (declared with thelatile
keyword) in combination witH' spin-sleeping— repeatedly checking the flag, and then sleeping for
a short period of time.

ManualResetEvens are sometimes used to signal that a particulewratipn is complete, or that a
thread's completed initialization and is readyedqm work.
Mutex

Mutex provides the same functionality as C#'s lock state, makingMutex mostly redundant. Its
one advantage is that it can work across multippegsses — providing a computer-wide lock rather
than an application-wide lock.

29

While Mutex is reasonably faskck is a hundred times faster again. Acquiringatex takes
a few microseconds; acquirindack takes tens of nanoseconds (assuming no blocking).

With aMutex class, th&VaitOne method obtains the exclusive lock, blocking § @¢bntended. The
exclusive lock is then released with fReleaseMutexmethod. Just like with C#eck statement, a
Mutex can only be released from the same thread thainsot it.

A common use for a cross-procddstex is to ensure that only instance of a program oarat a
time. Here's how it's done:

class OneAtATimePlease ({
/I Use a name unique to the application (eg include your company URL)
static Mut ex mutex = new Mit ex (false , "oreilly.com OneAtATimeDemo");

static void Main() {

/I Wait 5 seconds if contended — in case another in stance
/I of the program is in the process of shutting dow n.
if (Imutex. Wit One (TimeSpan .FromSeconds (5), false)){
Console .WriteLine ("Another instance of the app is running. Bye!");
return
}
try {
Console .WriteLine ("Running - press Enter to exit");
Console .ReadLine();
}
finally {mutex. Rel easeMut ex();}
}
}

A good feature oMutex is that if the application terminates withdeleaseMutexirst being
called, the CLR will release tiMutex automatically.

Semaphore

A Semaphoreis like a nightclub: it has a certain capacityfoeced by a bouncer. Once full, no more

people can enter the nightclub and a queue bugdsiutside. Then, for each person that leaves, one
person can enter from the head of the queue. Tirgro@tor requires a minimum of two arguments —
the number of places currently available in theéntdtlyb, and the nightclub's total capacity.

A Semaphorewith a capacity of one is similar toMutex or lock, except that th&emaphorehas
no "owner" — it'shread-agnosticAny thread can caReleaseon aSemaphore while with Mutex
andlock, only the thread that obtained the resource daase it.

In this following example, ten threads executeaplwith aSleepstatement in the middle. A
Semaphoreensures that not more than three threads can texgnaiSleepstatement at once:

30

class SemaphoreTest {
static Semaphore s= new Senaphore (3, 3); /I Available=3; Capacity=3

static void Main() {
for (int i=0;i<10;i++) new Thread (Go).Start();
}

static void Go() {
while (true){
S. Wi t One();
Thread .Sleep (100); /I Only 3 threads can get here at once
S. Rel ease();

}
}
}

WaitAny, WaitAll and SignalAndWait

In addition to theSetandWaitOne methods, there are static methods onMagtHandle class to
crack more complex synchronization nuts.

TheWaitAny, WaitAll andSignalAndWait methods facilitate waiting across multiple Wait
Handles, potentially of differing types.

SignalAndWait is perhaps the most useful: it call&itOne on oneéWaitHandle, while callingSet
on anotheWaitHandle — in an atomic operation. One can use methodthe pair of
EventWaitHandles to set up two threads so they "meet" at the gaime in time, in a textbook
fashion. EitheAutoResetEventor ManualResetEventwill do the trick. The first thread does the
following:

WaitHandle .SignalAndWait (wh1, wh2);

while the second thread does the opposite:
WaitHandle .SignalAndWait (wh2, wh1);

WaitHandle.WaitAny waits for any one of an array of wait handM&gitHandle.WaitAll waits on
all of the given handles. Using the ticket turrestihalogy, these methods are like simultaneously
queuing at all the turnstiles — going through atfitst one to open (in the caseV@hitAny), or
waiting until they all open (in the case\0RitAll).

WaitAll is actually of dubious value because of a weimheation to apartment threading — a
throwback from the legacy COM architectéaitAll requires that the caller be in a multi-threaded
apartment — which happens to be the apartment nieaigl suitable for interoperability — particularly
for Windows Forms applications, which need to penfétasks as mundane as interacting with the
clipboard!

Fortunately, the .NET framework provides a moreassxded signaling mechanism for when Wait
Handles are awkward or unsuitabl&tenitor.Wait andMonitor.Pulse.

31

Synchronization Contexts

Rather than locking manually, one can lock dedlaet. By deriving fromContextBoundObject
and applying th&ynchronization attribute, one instructs the CLR to apply lockendomatically.
Here's an example:

using System;
using System.Threading;
using System.Runtime.Remoting.Contexts;

[Synchroni zati on]
public class AutoLock : ContextBoundObject {
public void Demo() {

Console .Write ("Start...");
Thread .Sleep (1000); /l We can't be preempted here
Console .WriteLine ("end"); /I thanks to automatic locking!
}
}

public class Test {
public static void Main() {
AutoLock safelnstance = new AutoLock ();
new Thread (safelnstance.Demo).Start(); /I Call the Demo
new Thread (safelnstance.Demo).Start(); /I method 3 times
safelnstance.Demo(); /I concurrently.
}
}

Start... end
Start... end
Start... end

The CLR ensures that only one thread can execudke iosafelnstanceat a time. It does this by
creating a single synchronizing object — and logktraround every call to each sdifelnstances

methods or properties. The scope of the lock higidase — theafelnstanceobject — is called a
synchronization context

So, how does this work? A clue is in tBgnchronization attribute's namespace:
System.Runtime.Remoting.ContextsA ContextBoundObject can be thought of as a "remote”
object — meaning all method calls are intercepiedmake this interception possible, when we
instantiateAutoLock, the CLR actually returns a proxy — an object it same methods and
properties of autoLock object, which acts as an intermediary. It's via ihitermediary that the
automatic locking takes place. Overall, the intptioen adds around a microsecond to each method
call.

Automatic synchronization cannot be used to prattatic type members, nor classes not
derived fromContextBoundObiject (for instance, a Windowsorm).

The locking is applied internally in the same wégu might expect that the following example will
yield the same result as the last:

32

[Synchronization]
public class AutoLock : ContextBoundObject {
public void Demo() {
Console .Write ("Start...");
Thread .Sleep (1000);
Console .WriteLine ("end");

}

public void Test() {
new Thread (Demo).Start();
new Thread (Demo).Start();
new Thread (Demo).Start();
Console .ReadLine();

}

public static void Main() {
new AutoLock().Test();
}

}

(Notice that we've sneaked irCansole.ReadLinestatement). Because only one thread can execute
code at a time in an object of this class, theetlmaw threads will remain blocked at themo

method until thel'est method finishes — which requires tReadLine to complete. Hence we end up
with the same result as before, but only aftergnestheEnter key. This is a thread-safety hammer
almost big enough to preclude any useful multittireg within a class!

Furthermore, we haven't solved a problem desciaelier: if AutoLock were a collection class, for
instance, we'd still require a lock around a statensuch as the following, assuming it ran from
another class:

if (safelnstance.Count > 0) safelnstance.RemoveAt (0)
unless this code's class was itself a synchrorzedextBoundObject

A synchronization context can extend beyond th@esas a single object. By default, if a
synchronized object is instantiated from within toele of another, both share the same context (in
other words, one big lock!) This behavior can barged by specifying an integer flag in
Synchronization attribute's constructor, using one of the constdsfined in the
SynchronizationAttribute class:

Constant Meaning
NOT_SUPPORTED Equivalent to not using tH&ynchronizedattribute

SUPPORTED Joins the existing synchronization cdrifénstantiated from another

synchronized object, otherwise remains unsyncheohiz
REQUIRED Joins the existing synchronization context if ingtgted from another
(default) synchronized object, otherwise creates a new cbntex

REQUIRES_NEW | Always creates a new synchronizatmtext

So if object of clasSynchronizedAnstantiates an object of claSgnchronizedBthey'll be given
separate synchronization contextSyinchronizedis declared as follows:

33

[Synchronization (SynchronizationAttribute . REQUI RES_NEW]
public class SynchronizedB : ContextBoundObject {...

The bigger the scope of a synchronization contbgteasier it is to manage, but the less the
opportunity for useful concurrency. At the othedei the scale, separate synchronization contexts
invite deadlocks. Here's an example:

[Synchronization]
public class Deadlock : ContextBoundObject {
public DeadLock Other;
public void Demo(){ Thread .Sleep (1000); Other.Hello(); }
void Hello() { Console .WriteLine ("hello"), }

public class Test {
static void Main() {
Deadlock deadl = new Deadlock ();
Deadlock dead2 = new Deadlock ();
deadl.Other = dead?;
dead2.0Other = dead1;
new Thread (deadl.Demo).Start();
dead2.Demo();

}
}

Because each instance@é&adlockis created withiTest— an unsynchronized class — each instance
will gets its own synchronization context, and heerits own lock. When the two objects call upon
each other, it doesn't take long for the deadloabctcur (one second, to be precise!) The problem
would be particularly insidious if theeadlockandTest classes were written by different
programming teams. It may be unreasonable to expesé responsible for tAeest class to be even
aware of their transgression, let alone know hoga@bout resolving it. This is in contrast to ésipl
locks, where deadlocks are usually more obvious.

Reentrancy

A thread-safe method is sometimes catlesghtrant because it can be preempted part way through its
execution, and then called again on another thrgtwbut ill effect. In a general sense, the terms
thread-safeandreentrantare considered either synonymous or closely rlate

Reentrancy, however, has another more sinisteratatian in automatic locking regimes. If the
Synchronization attribute is applied with theeentrant argument true:

[Synchronization (true)]

then the synchronization context's lock will be pemarily released when execution leaves the
context. In the previous example, this would prevwka deadlock from occurring; obviously
desirable. However, a side effect is that during ititerim, any thread is free to call any methad o
the original object ("re-entering" the synchroniaatcontext) and unleashing the very complications
of multithreading one is trying to avoid in thesfiplace. This is the problem @fentrancy

34

BecausgSynchronization(true)] is applied at a class-level, this attribute tuemery out-of-
context method call made by the class into a Trijaneentrancy.

While reentrancy can be dangerous, there are soe&fiew other options. For instance, suppose one
was to implement multithreading internally withisynchronized class, by delegating the logic to
workers running objects in separate contexts. Theskers may be unreasonably hindered in
communicating with each other or the original objeithout reentrancy.

This highlights a fundamental weakness with aut@rsinchronization: the extensive scope over
which locking is applied can actually manufactuiféallties that may never have otherwise arisen.
These difficulties — deadlocking, reentrancy, amdsculated concurrency — can make manual
locking more palatable in anything other than sergdenarios.

35

PART 3
USING THREADS

Apartments and Windows Forms

Apartment threadings an automatic thread-safety regime, closelg@ito COM — Microsoft's

legacy Component Object Model. While .NET largelgdks free of legacy threading models, there
are times when it still crops up because of thelteenteroperate with older APIs. Apartment
threading is most relevant to Windows Forms, bezamsch of Windows Forms uses or wraps the
long-standing Win32 API — complete with its apanineeritage.

An apartment is a logical "container"” for threa@ipartments come in two sizes — "single" and
"multi". A single-threaded apartment contains jus¢ thread; multi-threaded apartments can contain
any number of threads. The single-threaded modbEisnore common and interoperable of the two.

As well as containing threads, apartments contajeats. When an object is created within an
apartment, it stays there all its life, forever @dbound along with the resident thread(s). This is
similar to an object being contained within a .N&mMhchronization context, except that a
synchronization context does not own or contaiadts. Any thread can call upon an object in any
synchronization context — subject to waiting fag #xclusive lock. But objects contained within an
apartment can only be called upon by a thread wite apartment.

Imagine a library, where each book represents gatbtBorrowing is not permitted — books created
in the library stay there for life. Furthermore;dause a person to represent a thread.

A synchronization context library allows any persorenter, as long as only one person enters at a
time. Any more, and a queue forms outside therjbra

An apartment library has resident staff — a sifiglarian for a single-threaded library, and whole
team for a multi-threaded library. No-one is allalwe other than members of staff — a patron
wanting to perform research must signal a librariean ask the librarian to do the job! Signalihg t
librarian is callednarshalling— the patrommarshalsthe method call over to a member of staff (or,

the member of staff!) Marshalling is automatic, & dnplemented at the librarian-end via a message
pump — in Windows Forms, this is the mechanism ¢bastantly checks for keyboard and mouse
events from the operating system. If messageseatoiv quickly to be processed, they enter a
message queue, so they can be processed in thelwgarrive.

Specifying an Apartment Model

A .NET thread is automatically assigned an apartrapan entering apartment-savvy Win32 or
legacy COM code. By default, it will be allocatedhalti-threaded apartment, unless one requests a
single-threaded apartment as follows:

Thread t= new Thread (...);
t.SetApartmentState (ApartmentState .STA);

One can also request that the main thread joinglesthreaded apartment using 8iEAThread
attribute on the main method:

36

class Program {
[STAThread]
static void Main() {

Apartments have no effect while executing pure .NBde. In other words, two threads with an
apartment state @TA can simultaneously call the same method on the sdoject, and no

automatic marshalling or locking will take placenl®when execution hits unmanaged code can they
kick in.

The types in th&ystem.Windows.Formsiamespace extensively call Win32 code designectk
in a single-threaded apartment. For this reas®inalows Forms program should have have the
[STAThread] attribute on its main method, otherwise one of tiwongs will occur upon reaching
Win32 Ul code:

- it will marshal over to a single-threaded apartment

« itwill crash

Control.Invoke

In a multi-threaded Windows Forms application,iltegal to call a method or property on a control
from any thread other than the one that createdlitross-thread calls must be explicitly marsedll
to the thread that created the control (usuallyniaen thread), using th@ontrol.Invoke or
Control.Begininvoke method. One cannot rely on automatic marshallagpbse it takes place too
late — only when execution gets well into unmanagegte, by which time plenty of internal .NET
code may already have run on the "wrong" threadde avhich is not thread-safe.

WPF is similar to Windows Forms in that elements ba accessed only from the thread that
originally created them. The equivalentGontrol.Invoke in WPF isDispatcher.Invoke.

An excellent solution to managing worker threadgimdows Forms and WPF applications is to use
BackgroundWorker. This class wraps worker threhdsieed to report progress and completion, and
automatically call€ontrol.Invoke or Dispatcher.Invoke as required.

BackgroundWorker

BackgroundWorker is a helper class in tt#&ystem.ComponentModehamespace for managing
a worker thread. It provides the following features

« A "cancel" flag for signaling a worker to end withtaising Abort

- A standard protocol for reporting progress, conmpieand cancellation

« An implementation ofComponent allowing it be sited in the Visual Studio Designer
« Exception handling on the worker thread

« The ability to update Windows Forms and WPF costiolresponse to worker

37

progress or completion.

The last two features are particularly useful méans you don't have to includéydcatch block
in your worker method, and can update Windows FantsWPF controls without needing to call
Control.Invoke.

BackgroundWorker uses the thread-pool, which recycles threads aaaecreating them for
each new task. This means one should never calitAbcaBackgroundWorker thread.

Here are the minimum steps in usBgckgroundWorker :
+ InstantiateBackgroundWorker, and handle thBoWork event
« Call RunWorkerAsync, optionally with an object argument.

This then sets it in motion. Any argument passddunWorkerAsync will be forwarded to
DoWork's event handler, via the event argumehttpument property. Here's an example:

class Program {
static BackgroundWorker bw = new BackgroundWorker ();
static void Main() {
bw. DoWr k +=bw_DoWork;
bw. RunWrker Async ("Message to worker");
Console .ReadLine();
}

static void bw_DoWork (object sender, DoWorkEventArgs e) {

/I This is called on the worker thread

Console .WriteLine (e.Argument); /I writes "Message to worker"
/I Perform time-consuming task...

}

BackgroundWorker also provides &unWorkerCompleted event which fires after theoWork
event handler has done its job. HandliRgnWorkerCompleted is not mandatory, but one usually
does so in order to query any exception that weamsnh in DoWork. Furthermore, code within a
RunWorkerCompleted event handler is able to update Windows FormsVeRé& controls without
explicit marshalling; code within thHeoWork event handler cannot.

To add support for progress reporting:
- Set theWorkerReportsProgressproperty to true

- Periodically calReportProgressfrom within theDoWork event handler with a
"percentage complete” value, and optionally, a-stae object

- Handle theProgressChangecevent, quering its event argumemieogressPercentage
property

Code in theProgressChangecdevent handler is free to interact with Ul contrjoist as with
RunWorkerCompleted. This is typically where you will update a progdmr.

To add support for cancellation:
« Set theWorkerSupportsCancellation property to true

« Periodically check th€ancellationPendingproperty from within th@©oWork event
handler — if true, set the event argume@tsicel property true, and return. (The worker
can seCanceltrue and exit without prompting vi@ancellationPending- if it decides
the job's too difficult and it can't go on).

38

« Call CancelAsyncto request cancellation.

Here's an example that implements all the aboverfest

using System;
using System.Threading;
using System.ComponentModel;

class Program {
static BackgroundWorker bw;
static void Main() {
bw = new BackgroundWorker ();
bw. Wor ker Report sProgress = true ;
bw. Wor ker SupportsCancel | ati on = true ;
bw.DoWork += bw_DoWork;
bw. ProgressChanged += bw_ProgressChanged;
bw. RunWr ker Conpl et ed += bw_RunWorkerCompleted,;

bw.RunWorkerAsync ("Hello to worker");

Console .WriteLine ("Press Enter in next 5 seconds to cancel");

Console .ReadLine();
if (bw. 1sBusy)bw. Cancel Async();
Console .ReadLine();

static void bw_DoWork (object sender, DoWorkEventArgs e) {
for (int i=0;i<=100;i+=20){
if (bw. Cancel | ati onPendi ng) {
e. Cancel = true ;
return
}

bw. Repor t Progr ess (i);
Thread .Sleep (1000);

}
e .Result =123; /I This gets passed to RunWorkerCopmleted
}

static void bw_RunWorkerCompleted (object sender,
RunWorkerCompletedEventArgs e){
if (e. Cancell ed)

Console .WriteLine ("You cancelled!");
else if (e. Error = null)

Console .WriteLine ("Worker exception: " + e.Error.ToString());
else

Console .WriteLine ("Complete - " +e. Result); //from DoWork

static void bw_ProgressChanged (object sender,
ProgressChangedEventArgs e){
Console .WriteLine ("Reached" +e. ProgressPercentage+ "%"),

39

Press Enter in the next 5 seconds to cancel
Reached 0%

Reached 20%

Reached 40%

Reached 60%

Reached 80%

Reached 100%

Complete — 123

Press Enter in the next 5 seconds to cancel
Reached 0%

Reached 20%

Reached 40%

You cancelled!

Subclassing BackgroundWorker

BackgroundWorker is not sealed and provides a virt@aiDoWork method, suggesting another
pattern for its use. When writing a potentiallyderunning method, one could instead — or as well —
write a version returning a subclas&atkgroundWorker, pre-configured to perform the job
asynchronously. The consumer then only need hahdl&unWorkerCompleted and
ProgressChangeckvents. For instance, suppose we wrote a timedooing method called
GetFinancialTotals:

public class Client {
Dictionary < string , int > GetFinancialTotals (int foo, int bar){...}

}...
We could refactor it as follows:

public class Client {
public FinancialWorker GetFinancialTotalsBackground (int foo, int bar){
return new FinancialWorker (foo, bar);

}
}
public class FinancialWorker : BackgroundWorker {
public Dictionary <string ,int > Result; /' We can add typed fields.
public volatile int Foo, Bar; /I We could even expose them
Il via p roperties with locks!
public FinancialWorker() {
WorkerReportsProgress = true ;
WorkerSupportsCancellation = true ;
}
public FinancialWorker (int foo, int bar): this () {
this .Foo = foo; this .Bar = bar;
}

40

protected override void OnDoWork (DoWorkEventArgs e) {
ReportProgress (0, "Working hard on this report...");

Initialize financial report data

while (! finished report) {
if (CancellationPending) {

e.Cancel = true ;
return
}
Perform another calculation step

ReportProgress (percentCompleteCalc, "Getting there...");
ReportProgress (100, "Donel!"),
e.Result = Result = completed report data;

}
}

Whoever callsGetFinancialTotalsBackgroundthen gets &inancial\WWorker — a wrapper to
manage the background operation with real-worldilisa It can report progress, be cancelled, and
is compatible with Windows Forms withoGontrol.Invoke. It's also exception-handled, and uses a
standard protocol (in common with that of anyorse elsingBackgroundWorker!)

This usage oBackgroundWorker effectively deprecates the old "event-based aspmcus
pattern”.

ReaderWriterLockSIlim / ReaderWriterLock

Quite often, instances of a type are thread-safedoncurrent read operations, but not for concurren
updates (nor for a concurrent read and update}. ddn also be true with resources such as a file.
Although protecting instances of such types wifinaple exclusive lock for all modes of access
usually does the trick, it can unreasonably restoacurrency if there are many readers and just
occasional updates. An example of where this cootdrr is in a business application server, where
commonly used data is cached for fast retrievatatic fields. ThéReaderWriterLockSlim class is
designed to provide maximum-availability lockingjust this scenario.

ReaderWriterLockSlim is new to Framework 3.5 and is a replacementifetder “fat”
ReaderWriterLock class. The latter is similar in functionality, bsitseveral times slower and
has an inherent design fault in its mechanism &ordling lock upgrades.

With both classes, there are two basic kinds df:laaead lock and a write lock. A write lock is
universally exclusive, whereas a read lock is cdibjgawith other read locks.

So, a thread holding a write lock blocks all ottieeads trying to obtain a read or write lock (and
vice versa). But if no thread holds a write locky @aumber of threads may concurrently obtain a
read lock.

ReaderWriterLockSlim defines the following methods for obtaining aniéasing read/write locks:

public void EnterReadLock();
public void ExitReadLock();
public void EnterWriteLock();
public void ExitWriteLock();

41

Additionally, there are “Try” versions of dlinterXXX methods which accept timeout arguments in
the style ofMonitor.TryEnter (timeouts can occur quite easily if the resouscleaavily contended).
ReaderWriterLock provides similar methods, namadquireXXX andReleaseXXX These throw
anApplicationException if a timeout occurs rather than returning false.

The following program demonstratBgaderWriterLockSlim . Three threads continually enumerate
a list, while two further threads append a randemioer to the list every second. A read lock
protects the list readers and a write lock protdatdist writers:

class SlimbDemo

{

static ReaderWriterLockSlim rw = new ReaderWriter LockSIlim();
static List<int> items = new List<int>();
static Random rand = new Random();

static void Main()

new Thread (Read).Start();
new Thread (Read).Start();
new Thread (Read).Start();

new Thread (Write).Start ("A");
new Thread (Write).Start ("B");

}

static void Read()

while (true)
{
rw.EnterReadLock();
foreach (int i in items) Thread.Sleep (10);
rw.ExitReadLock();
}
}

static void Write (object threadID)

while (true)

{
int newNumber = GetRandNum (100);
rw.EnterWriteLock();
items.Add (newNumber);
rw.ExitWriteLock();

Console.WriteLine ("Thread " + threadID + " a dded " + newNumber);
Thread.Sleep (100);
}
}
static int GetRandNum (int max) { lock (rand) ret urn rand.Next (max); }
}

In production code, you'd typically addy /finally blocks to ensure locks were released if an
exception was thrown.

Here's the result:

Thread B added 61
Thread A added 83

42

Thread B added 55
Thread A added 33

ReaderWriterLockSlim allows more concurreiReadactivity than would a simple lock. We can
illustrate this by inserting the following line the Write method, at the start of tiehile loop:

Console.WriteLine (rw.CurrentReadCount + " concurre nt readers");

This nearly always prints “3 concurrent readergéRead methods spend most their time inside the
foreach loops). As well a€urrentReadCount, ReaderWriterLockSlim provides the following
properties for monitoring locks:

public bool IsReadLockHeld {get; }
public bool IsUpgradeableReadLockHeld { get; }
public bool IsWriteLockHeld {get; }

public int WaitingReadCount {get; }
public int WaitingUpgradeCount {get; }
public int WaitingWriteCount {get; }
public int RecursiveReadCount {get; }
public int RecursiveUpgradeCount { get; }
public int RecursiveWriteCount {get; }

Sometimes it's useful to swap a read lock for deniack in a single atomic operation. For instance,
suppose you wanted to add an item to a list ortlygfitem wasn’t already present. Ideally, you'd
want to minimize the time spent holding the (exislelwrite lock, so you might proceed as follows:

1. Obtain a read lock

2. Test if the item is already present in the lisg @rso, release the lock aneturn
3. Release the read lock

4. Obtain a write lock

5. Add the item

The problem is that another thread could sneakdnaodify the list (adding the same item, for
instance) between steps 3 andRéaderWriterLockSlim addresses this through a third kind of lock
called arupgradeable lockAn upgradeable lock is like a read lock except thcan later be
promoted to a write lock in an atomic operationrdfehow you use it:

1. Call EnterUpgradeableReadLock

Perform read-based activities (e.g. test if iteraady present in list)

Call EnterWriteLock (this converts the upgradeable lock to a writ&)Joc
Perform write-based activities (e.g. add item $0) li

Call ExitWriteLock (this converts the write lock back to an upgrateéick)

o 0 kA WD

Perform any other read-based activities
7. Call ExitUpgradeableReadLock

From the caller’s perspective, it’s rather like teesor recursive locking. Functionally, thoughstep
3, ReaderWriterLockSlim releases your read-lock and obtains a fresh Wil atomically.

43

There’s another important difference between upegbte locks and read locks. While an upgradable
lock can coexist with any number re&fad locks, only one upgradeable lock can itself bemadut at a
time. This prevents conversion deadlocksésializingcompeting conversions—just as update locks
do in SQL Server:

SQL Server |ReaderWriterLockSlim

Share lock Read lock

Exclusive lock Write lock

Update lock | Upgradeable lock

We can demonstrate an upgradeable lock by by chgrniageWrite method in the preceding example
such that it adds a number to list only if not athg present:

while (true)

int newNumber = GetRandNum (100);
rw.EnterUpgradeableReadLock();
if (litems.Contains (newNumber))
{
rw.EnterWriteLock();
items.Add (newNumber);
rw.ExitWriteLock();
Console.WriteLine ("Thread " + threadID + " add ed " + newNumber);

}
rw.ExitUpgradeableReadLock();
Thread.Sleep (100);

}

ReaderWriterLock can also do lock conversions—but unreliably beedtudoesn’t support
the concept of upgradeable locks. This is why tsighers oReaderWriterLockSlim had to
start afresh with a new class.

Lock recursion

Ordinarily, nested or recursive locking is prohgoitwith ReaderWriterLockSlim. Hence, the
following throws an exception:

var rw = new ReaderWriterLockSIlim();
rw.EnterReadLock();
rw.EnterReadLock();
rw.ExitReadLock();
rw.ExitReadLock();

It runs without error, however, if you constriReaderWriterLockSlim as follows:

var rw = new ReaderWriterLockSlim (LockRecur si onPol i cy. Support sRecur si on);

This ensures that recursive locking can happenibglyu plan for it. Recursive locking can bring
undesired complexity because it's possible to aeguiore than one kind of lock:

rw.EnterWriteLock();
rw.EnterReadLock();
Console.WriteLine (rw.IsReadLockHeld); // True
Console.WriteLine (rw.IsWriteLockHeld); // True

44

rw.ExitReadLock();
rw.ExitWriteLock();

The basic rule is that once you've acquired a lsaksequent recursive locks can less, but not
greater, on the following scale:

Read Lock --> Upgradeable Lock --> Wiibck

A request to promote an upgradeable lock to a Wodlke, however, is always legal.

Thread Pooling

If your application has lots of threads that sperast of their time blocked on a Wait Handle, you
can reduce the resource burdentkii@ad pooling A thread pool economizes by coalescing many
Wait Handles onto a few threads.

To use the thread pool, you register a Wait Haattiag with a delegate to be executed when the
Wait Handle is signaled. This is done by calliffgeadPool.RegisterWaitForSingleObject such in
this example:

class Test {
static ManualResetEvent starter = new ManualResetEvent (false);

public static void Main() {
ThreadPool . Regi st er Wi t For Si ngl eQbj ect (starter, Go,
"hello" -1, true);
Thread .Sleep (5000);
Console .WriteLine ("Signaling worker...");
starter.Set();
Console .ReadLine();

}
public static void Go (object data, bool tinedQut){
Console .WriteLine ("Started " + data);
/I Perform task...
}
}

(5 second delay)
Signaling worker...
Started hello

In addition to the Wait Handle and deleg&egisterWaitForSingleObjectaccepts a "black box"
object which it passes to your delegate methotiérdike with a ParameterizedThreadStart), as well
as a timeout in milliseconds (-1 meaning no timgant a boolean flag indicating if the request is
one-off rather than recurring.

All pooled threads arkackgroundhreads, meaning they terminate automatically when
application's foreground thread(s) end. Howevend wanted to wait until any important jobs
running on pooled threads completed before examgpplication, calling Join on the threads would
not be an option, since pooled threads never fiffikk idea is that they are instead recycled, awd e
only when the parent process terminates. So inr éeedenow when a job running on a pooled thread
has finished, one must signal — for instance, aitbther Wait Handle.

45

Calling Abort on a pooled thread is Bad Idea. The threads meke tecycled for the life of
the application domain.

You can also use the thread pool without a Waitdtaby calling theQueueUserWorkltem

method — specifying a delegate for immediate execu¥ ou don't then get the saving of sharing
threads amongst multiple jobs, but do get anotkeefit: the thread pool keeps a lid on the total
number of threads (25, by default), automaticatigjieeuing tasks when the job count goes above this.
It's rather like an application-wide producer-cansu queue with 25 consumers! In the following
example, 100 jobs are enqueued to the thread pibehich 25 execute at a time. The main thread
then waits until they're all complete using Waitl &ulse:

class Test {
static object workerLocker = new object ();
static int runningWorkers = 100;

public static void Main() {
for (int i=0;i<runningWorkers; i++) {
ThreadPool . QueueUser Wor kit em(Go, i);

}
Console .WriteLine ("Waiting for threads to complete...");
lock (workerLocker) {
while (runningWorkers > 0) Monitor .Wait (workerLocker);
}
Console .WriteLine ("Complete!"),
Console .ReadLine();
}
public static void Go (object instance) {
Console .WriteLine ("Started: " + instance);
Thread .Sleep (1000);
Console .WriteLine ("Ended:" + instance);
lock (workerLocker) {
runningWorkers--; Monitor .Pulse (workerLocker);
}
}
}

In order to pass more than a single object todhget method, one can either define a custom object
with all the required properties, or call via amamymous method. For instance, if the method
accepted two integer parameters, it could be stagdollows:

ThreadPool .QueueUserWorkitem (- delegate (object notUsed) { Go (23,34); });

Another way into the thread pool is \aaynchronous delegates

Asynchronous Delegates

In Part 1 we described how to pass data to a thresiily ParameterizedThreadStart. Sometimes you
need to go the other way, and get return valuek fram a thread when it finishes executing.
Asynchronous delegates offer a convenient mechafasthis, allowing any number of typed
arguments to be passed in both directions. Furthermunhandled exceptions on asynchronous
delegates are conveniently re-thrown on the orighm@ad, and so don't need explicit handling.
Asynchronous delegates also provide another wayti thread pool.

46

The price you must pay for all this is in followiitg asynchronous model. To see what this means,
we'll first discuss the more usual, synchronousjehof programming. Let's say we want to compare
two web pages. We could achieve this by downloadangh page in sequence, then comparing their
output as follows:

static void ComparePages() {

WebClient wc = new WebClient ();
string s1 = wc.DownloadString ("http://www.oreilly.com");
string s2 = wc.DownloadString ("http://oreilly.com"”);
Console .WriteLine (s1==s2? "Same" : "Different");

}

Of course it would be faster if both pages downéabdt once. One way to view the problem is to
blameDownloadString for blocking the calling method while the pagedswvnloading. It would be
nice if we could calDownloadString in a non-blocking asynchronous fashion, in otherds:

1. We tellDownloadString to start executing.
2. We perform other tasks while it's working, sucldawnloading another page.

3. We askDownloadString for its results.

TheWebClient class actually offers a built-in method call@dwnloadStringAsyncwhich
provides asynchronous-like functionality. For neve/'ll ignore this and focus on the
mechanism by whicany method can be called asynchronously.

The third step is what makes asynchronous delegatdsal. The caller rendezvous with the worker to
get results and to allow any exception to be reviim: Without this step, we have normal
multithreading. While it's possible to use asyndags delegates without the rendezvous, you gain
little over calling ThreadPool.QueueWorkerltem sing BackgroundWorker.

Here's how we can use asynchronous delegates tdaivtwo web pages, while simultaneously
performing a calculation:

delegate string DownloadString (string uri);

static void ComparePages() {

/I Instantiate delegates with DownloadString's si gnature:
DownloadString downloadl = new WebClient ().DownloadString;
DownloadString download?2 = new WebClient ().DownloadString;

/I Start the downloads:
IAsyncResult cookiel = downloadl.Begininvoke (uril, null , null);
IAsyncResult cookie2 = download2.Begininvoke (uri2, null , null);

/I Perform some random calculation:
double seed=1.23;
for (int i=0;i<1000000; i++) seed = Math .Sqgrt (seed + 1000);

/I Get the results of the downloads, waiting for completion if necessary.
/I Here's where any exceptions will be thrown:

string s1 = downloadl.EndInvoke (cookiel);

string s2 = download2.EndInvoke (cookie2);

Console .WriteLine (s1 ==s2? "Same" : "Different”);

a7

We start by declaring and instantiating delegatesnethods we want to run asynchronously. In this
example, we need two delegates so that each caremet a separatéebClient object {(VebClient
does not permit concurrent access—if it did, wddoise a single delegate throughout).

We then calBegininvoke. This begins execution while immediately returnaagtrol to the caller.
In accordance with our delegate, we must passrgdtrBegininvoke (the compiler enforces this,
by manufacturing typeBegininvoke andEndinvoke methods on the delegate type).

Beginlnvoke requires two further arguments—an optional caltbaad data object; these can be left
null as they're usually not requirdgiegininvoke returns anASynchResult object which acts as a
cookie for callingendinvoke. ThelASynchResult object also has the propetsCompletedwhich
can be used to check on progress.

We then calEndIinvoke on the delegates, as their results are neétetinvoke waits, if necessary,
until its method finishes, then returns the methoeturn value as specified in the delegate (stimg
this case). A nice feature BhdInvoke is that if theDownloadString method had any ref or out
parameters, these would be added Enidinvoke's signature, allowing multiple values to be sent
back by to the caller.

If at any point during an asynchronous method'setien an unhandled exception is encountered, it's
re-thrown on the caller's thread upon calligdinvoke. This provides a tidy mechanism for
marshaling exceptions back to the caller.

If the method you're calling asynchronously hasatorn value, you are still (technically)
obliged to calEndInvoke. In a practical sense this is open to interpretatihe MSDN is
contradictory on this issue. If you choose notdth Endinvoke, however, you'll need to
consider exception handling on the worker method.

Asynchronous Methods

Some types in the .NET Framework offer asynchronausions of their methods, with names
starting with "Begin" and "End". These are callsgirechronous methods and have signatures similar
to those of asynchronous delegates, but existite somuch harder problerto allow more

concurrent activities than you have threadlsveb or TCP sockets server, for instance, cacgss
several hundred concurrent requests on just a tboidbooled threads if written using
NetworkStream.BeginReadandNetworkStream.BeginWrite.

Unless you're writing a high concurrency applicatioowever, you should avoid asynchronous
methods for a number of reasons:

« Unlike asynchronous delegates, asynchronous methagsot actually execute in
parallel with the caller

« The benefits of asynchronous methods erodes gomksas if you fail to follow the
pattern meticulously

« Things can get complex pretty quickly when you dlitofv the pattern correctly

If you're simply after parallel execution, you'retter off calling the synchronous version of the
method (e.gNetworkStream.Read via an asynchronous delegate. Another optioa isse
ThreadPool.QueueUserWorkitemor BackgroundWorker—or simply create a new thread.
Chapter 20 of C# 3.0 in a Nutshell explains asymcbus methods in detail.

48

Asynchronous Events

Another pattern exists whereby types can provige@sonous versions of their methods. This is
called the "event-based asynchronous pattern"saditinguished by a method whose name ends
with "Async"”, and a corresponding event whose nands in "Completed". Thé&/ebClient class
employs this pattern in iBownloadStringAsyncmethod. To use it, you first handle the
"Completed" event (e.dpownloadStringCompleted and then call the "Async" method (e.g.
DownloadStringAsyng. When the method finishes, it calls your evemtdier. Unfortunately,
WebClient's implementation is flawed: methods suctbasvnloadStringAsyncblock the caller for
a portion of the download time.

The event-based pattern also offers events foressgeporting and cancellation, designed to be
friendly with Windows applications that update farand controls. If you need these features in a
type that doesn't support the event-based asynotsamodel (or doesn't support it correctly!) you
don't have to take on the burden of implementirgpittern yourself, however (and you wouldn't
want to!) All of this can be achieved more simplighnwthe BackgroundWorker helper class.

Timers

The easiest way to execute a method periodicallgiisg atimer — such as th&imer class provided
in the System.Threadingnamespace. The threading timer takes advantatye tfiread pool,
allowing many timers to be created without the bead of many thread$imer is a fairly simple
class, with a constructor and just two methodse{ayht for minimalists, as well as book authors!)

public sealed class Timer : MarshalByRefObject , IDisposable
{
public Timer (TimerCallback tick, object state, 1st, subsequent);
public bool Change (1st, subsequent); /I To change the interval
public void Dispose(); /I To Kill the timer
}
1st = time to the first tick in milliseconds or a Time Span
subsequent = subsequent intervals in milliseconds or a TimeSp an

(use Timeout.Infinite for a one-off callback)

In the following example, a timer calls thek method which writes "tick..." after 5 seconds have
elapsed, then every second after that — until Hee presseBnter:

using System;
using System.Threading;

class Program {
static void Main() {

Timer tmr= new Timer (Tick, "tick..." , 5000, 1000);
Console .ReadLine();
tmr.Dispose(); /I End the timer

static void Tick (object data) {
/I This runs on a pooled thread
Console .WriteLine (data); /I Writes "tick..."
}
}

The .NET framework provides another timer clasthefsame name in tt8&ystem.Timers
namespace. This simply wragstem.Threading.Timer, providing additional convenience while

49

using the same thread pool — and the identicalrnlyidg engine. Here's a summary of its added
features:

« A Componentimplementation, allowing it to be sited in the ¥ Studio Designer
« AnInterval property instead of @hangemethod

« An Elapsedeventinstead of a callback delegate

« An Enabled property to start and pause the timer (its defaallie being false)

- Start andStop methods in case you're confuseddnabled

- anAutoResetflag for indicating a recurring event (default waltrue)

Here's an example:

using System;
using System.Timers; /I Timers namespace rather than Threading

class SystemTimer {
static void Main() {

Timer tmr= new Timer (); /I Doesn't require any args
tmr. I nt erval =500;
tmr. El apsed +=tmr_Elapsed,; /I Uses an event instead of a delegate
tmr. Start(); /I Start the timer
Console .ReadLine();
tmr. St op(); /I Pause the timer
Console .ReadLine();
tmr. Start(); /l Resume the timer
Console .ReadLine();
tmr. Di spose(); /I Permanently stop the timer

static void tmr_Elapsed (object sender, EventArgs e){
Console .WriteLine ("Tick");
}

}

The .NET framework provides yet a third timer -the System.Windows.Formshamespace. While
similar toSystem.Timers.Timerin its interface, it's radically different in tifienctional sense. A
Windows Forms timer does not use the thread posiead firing its "Tick" event always on the same
thread that originally created the timer. Assuntimg is the main thread — also responsible for
instantiating all the forms and controls in the dbws Forms application — the timer's event handler
is then able to interact with the forms and costreithout violating thread-safety — or the impasis

of apartment-threadin@ontrol.Invoke is not required. The Windows timer is, in effexsingle-
threaded timer

I There's an equivalent single-threaded timer for WiRaRedDispatcherTimer.

Windows Forms and WPF timers are intended for tbhsmay involve updating the user interface
and which execute quickly. Quick execution is intpot because thEck event is called on the main
thread — which if tied up, will make the user iféee unresponsive.

50

Local Storage

Each thread gets a data store isolated from adratireads. This is useful for storing "out-of-band
data — that which supports the execution pathfastructure, such as messaging, transaction or
security tokens. Passing such data around via rdgtammeters would be extremely clumsy and
would alienate all but your own methods; storingrsinformation in static fields would mean
sharing it between all threads.

Thread.GetDatareads from a thread's isolated data stbheead.SetDatawrites to it. Both
methods require bocalDataStoreSlotobject to identify the slot — this is just a wrapjor a string
that names the slot — the same one can be usessattthreads and they'll still get separate \&lue
For example:

class ...{

/I The same LocalDataStoreSlot object can be used
/I across all threads.

LocalDataStoreSlot secSlot = Thread .GetNamedDataSlot
("securityLevel");
/[This property has a separate value on each threa d.
int SecurityLevel {
get {
object data= Thread . Get Dat a (secSlot);
return data== null ?0:(int) data; /I null == uninitialized
}
set {

Thread . Set Dat a (secSlot, value);

Thread.FreeNamedDataSlowill release a given data slot across all threaldat only once all
LocalDataStoreSlotobjects of the same name have dropped out of smupéeen garbage
collected. This ensures threads don't get data gldted out from under their feet — as long ay the
keep a reference to the appropriavealDataStoreSlotobject for as long as it's in use.

51

PART 4
ADVANCED TOPICS

Non-Blocking Synchronization

Earlier, we said that the need for synchronizatioses even the simple case of assigning or
incrementing a field. Although locking can alwawisfy this need, a contended lock means that a
thread must block, suffering the overhead and tateh being temporarily descheduled, which can
be undesirable in highly concurrent and performanreal scenarios. The .NET Framework’s
nonblocking synchronization constructs can perfemrmple operations without ever blocking,
pausing, or waiting.

Writing nonblocking or lock-free multithreaded caogi®perly is tricky! Memory barriers, in
particular, are easy to get wrong (the volatilevkesd is even easier to get wrong). Think
carefully whether you really need the performaneedfits before dismissing ordinary locks.

The non-blocking approaches also work across nelfippcesses. An example of where this might
be useful is in reading and writing process-shanedory.

Memory Barriers and Volatility

Consider the following example:

class Foo

{

int _answer;
bool _complete;

void A()
{

_answer = 123;
_complete = true;

}
void B()
if (_complete) Console.WriteLine (_answer);

}

If methodsA andB ran concurrently on different threads, might itdossible to foB to write “0”?
The answer is yes—for the following reasons:

« The compiler, CLR or CPU may re-order your progsamstructions to improve
efficiency.

+ The compiler, CLR or CPU may introduce cachingmations such that assignments to
variables won't be visible to other threads rightg

C# and the runtime are very careful to ensureghelh optimizations don't break ordinary single-
threaded code—or multithreaded code that makeseprge of locks. Outside of these scenarios, you

52

must explicitly defeat these optimizations by dregtmemory barriergalso callednemory fencggo
limit the effects of instruction reordering anddéarite caching.

Full fences

The simplest kind of memory barrier is a full mesbarrier (full fence) which prevents any kind of
instruction reordering or caching around that fei@aling Thread.MemoryBarrier generates a full
fence; we can fix our example by applying four felhces as follows:

class Foo

{

int _answer;
bool _complete;

void A()

_answer = 123;

Thread. MenoryBarrier(); /1 Barrier 1
_complete = true;

Thread. MenoryBarrier(); /1 Barrier 2
}

void B()

Thread. MenoryBarrier(); /1 Barrier 3
if (_complete)

Thread. MenoryBarrier(); /] Barrier 4
Console.WriteLine (_answer);

}
}
}

Barriers 1 and 4 prevent this example from writi@g Barriers 2 and 3 providefaeshness
guarantee: they ensure that if B ran after A, mgdcompletewould evaluate to true.

A full fence takes a few tens of nanoseconds.

The following implicitly generate full fences:

= C#'slock statementNlonitor.Enter /Monitor.EXit)

= All methods on thénterlocked class (we’ll cover these soon)

= Asynchronous callbacks that use the thread pothese include asynchronous delegates,
APM callbacks (and Framework 4.0's Task continuegio

= Setting and waiting on a signaling construct

You don'’t necessarily need a full fence with evieidividual read or write. If we had thre@swer
fields, our example would still need only four fesc

53

class Foo

{

int _answerl, _answer2, _answer3;
bool _complete;

void A()

_answerl = 1; answer2 =2; _answer3 = 3;
Thread.MemoryBarrier();

_complete = true;

Thread.MemaoryBarrier();

}
void B()

Thread.MemoryBarrier();
if (_complete)

Thread.MemoryBarrier();
Console.WriteLine (_answerl + _answer2 + _ans wer3);

}
}
}

A good approach is start by putting memory barrmf®re and after every instruction that reads or
writes a shared field, and then strip away the dmasyou don’t need. If you're uncertain of any,
leave them in. Or better: switch back to using $ck

Do we Really Need Locks & Barriers?

Working withshared writable fieldsvithout locks or fences is asking for trouble. fiéig a lot

of misleading information on this topic—includingetMSDN documentation which states thal
MemoryBarrier is required only on multiprocessor systems witlakvenemory ordering, such
as a system employing multiple ltanium processftes.can demonstrate that memory barriers
are important on ordinary Intel Core-2 and Pentprotessors with the following short
program. You'll need to run it with optimizationeabled and without a debugger (in Visual
Studio, select “Release Mode” in the solution’sfauration manager, and then start without
debugging):

static void Main()

bool complete = false;
var t = new Thread (() =>

bool toggle = false;
while (lcomplete) toggle = 'toggle;
D
t.Start();
Thread.Sleep (1000);
complete = true;
t.Join(); /I Blocks indefinitely

}

This programmever terminatédnserting a call trhread.MemoryBarrier inside the while-
loop (or locking around reading complete) fixes ¢neor.

54

The volatile keyword

Another (more advanced) way to solve this problenoiapply the volatile keyword to the _complete
field:

volatile bool _complete;

The volatile keyword instructs the compiler to gate anacquire-fenceon every read from that
field, and aelease-fencen every write to that field. An acquire-fenceymets other reads/writes
from being movedbeforethe fence; a release-fence prevents other reatkgvinrom being moved
afterthe fence. These “half-fences” are faster thanfémices because they give the runtime and
hardware more scope for optimization.

As it happens, X86 processors always apply acdairees to reads and release-fences to
writes—whether or not you use the volatile keywamalthis keyword has no effect on the X86{
processor itself. However, volatittneshas an effect on optimizations performed by the
compiler and CLR. This means that you cannot beemglexed by virtue of your clients
running X86 processors.

(And even if youdo use volatile, you should still maintain a healdense of anxiety, as we'll
see shortly!)

The effect of applying volatile to fields can bersuarized as follows:

First Instruction | Second Instruction| Can they be swapped?
Read Read No

Read Write No

Write Write No

Write Read Yes!

Notice that applyingolatile doesn’t prevent a write followed by a read fronrmbeswapped, and this
can create brain-teasers. Joe Duffy illustratepthblem well with the following example: if Testl
and Test2 run simultaneously on different thredtispossible for a and b to both end up with aueal
of O (despite the use of volatile on both x and y):

class IfYouThinkYouUnderstandVolatile
volatile int x, y;

void Test1() /I Executed on one thread

{
x=1; /I Volatile write (release-fe nce)
inta=yj; /I Volatile read (acquire-fen ce)
}
void Test2() /I Executed on another thread
{
y=1; /I Volatile write (release-fe nce)
intb=x; /I Volatile read (acquire-fen ce)
}
}

55

The MSDN documentation states that use of the l@ledyword ensures that the most up-to-
date value is present in the field at all timedsT$incorrect, since as we've seen, a write
followed by a reagdanbe reordered.

This presents a strong case for avoiding volagNen if you understand the subtlety in this example
will other developers working on your code alsoensteind it? A full fence between each of the two
assignments in Testl and Test2 (a or lock) solvegtoblem.

The volatile keyword is not supported with passréference arguments or captured local variables:
in these cases you must useWutatileRead andVolatileWrite methods.

VolatileRead and VolatileWrite

The staticVolatileRead andVolatileWrite methods in the Thread class read/write a variabié
enforcing (technically, a superset of) the guaresiteade by the volatile keyword. Their
implementations are relatively inefficient, thoughthat they actually generate full fences. Heee a
their complete implementations for the integer type

public static void VolatileWrite (ref int address, int value)

MemoryBarrier(); address = value;

public static int VolatileRead (ref int address)

{

int num = address; MemoryBatrrier(); return num;

}
You can see from this that if you c&lblatileWrite followed byVolatileRead, no barrier is
generated in the middle: this enables the sama-easing scenario that we saw earlier.

Memory barriers and locking

As we said earliefylonitor.Enter andMonitor.Exit both generate full fences. So, if we ignore a
lock’s mutual exclusion guarantee, we could say ttha:

lock (someField) { ... }
is equivalent to:

Thread.MemoryBarrier(); { ... } Thread.MemoryBarrier();

Atomicity and Interlocked

Use of memory barriers is not always enough wheading or writing fields in lock-free code.
Operations on 64-bit fields, increments and decregmeequire the heavier approach of using the
Interlocked helper clasdnterlocked also provides thExchangeandCompareExchangemethods,
the latter enabling lock-free read-modify-write ogg@ns, with a little additional coding.

A statement is intrinsically atomic if it execut&s a single indivisible instruction on the undentyi
processor. Strict atomicity precludes any poss$ybdf preemption. A simple read or write on a field
of 32 bits or less is always atomic. Operation$4bit fields are guaranteed to be atomic only in a

56

64-bit runtime environment, and statements thatpenmore than one read/write operation are
never atomic:

class Atomicity

{
static int _x, _y;
static long _z;

static void Test()

long myLocal,
xX=3; /I Atomic
z=3; /I Nonatomic on 32-bit envi rons (_z is 64 bits)
mylLocal = _z; /I Nonatomic on 32-bit envi rons (_z is 64 bits)
y+=_X; /I Nonatomic (read AND writ € operation)
X+ /I Nonatomic (read AND writ e operation)

}

}

Reading and writing 64-bit fields is nonatomic @:kdt environments because it requires two
separate instructions; one for each 32-bit menmmegtion. So, if thread reads a 64-bit value while
thready is updating it, thread may end up with a bitwise combination of the aldl aew values (a
torn read).

The compiler implements unary operators of the kifitl by reading a variable, processing it, and
then writing it back. Consider the following class:

class ThreadUnsafe

{
static int _x = 1000;
static void Go() { for (inti=0; i< 100; i++) X}

}

Putting aside the issue of memory barriers, yolhinggpect that if 10 threads concurrently run Go,
_xwould end up as 0. However, this is not guaranteedause a race condition is possible whereby
one thread preempts another in between retrievkgjcurrent value, decrementing it, and writing it
back (resulting in an out-of-date value being erijt

Of course, you can address these issues by wragigngonatomic operations in a lock statement.
Locking, in fact, simulates atomicity if consistigrapplied. Thdnterlocked class, however,
provides an easier and faster solution for suclpleimperations:

class Program
static long _sum;

static void Main()

/I _sum
/I Simple increment/decrement operations:
Interlocked.Increment (ref _sum); /11
Interlocked.Decrement (ref _sum); 110
/I Add/subtract a value:
Interlocked.Add (ref _sum, 3); /I3
/I Read a 64-bit field:
Console.WriteLine (Interlocked.Read (ref _sum)) ; /I3
/I Write a 64-bit field while reading previous value:
/I (This prints "3" while updating _sum to 10)
Console.WriteLine (Interlocked.Exchange (ref _s um, 10)); /110

57

/I Update a field only if it matches a certain value (10):
Console.WriteLine (Interlocked.CompareExchange (ref _sum,
123, 10); /123
}

}

All of Interlocked’s methods generate a full fence. Therefore, fighds$ you access via
Interlocked don’t need additional fences—unlesg’teeaccessed in other places in your
program without Interlocked or a lock.

Interlocked’s mathematical operations are restrictethtwmement, DecrementandAdd. If you
want to multiply—or perform any other calculationetycan do so in lock-free style by using the
CompareExchangemethod (typically in conjunction with spin-waitinthis is an advanced concept).

Interlocked works by making its need for atomicity known te thperating system and virtual
machine.

Interlocked’s methods have a typical overhead of 50ns—hatfahan uncontended lock.
Further, they can never suffer the additional oésiontext switching due to blocking. The flip
side is that using Interlocked within a loop witlamy iterations can be less efficient that
obtaining a single loc&roundthe loop (although Interlocked enables greetercurrency.

Wait and Pulse

Earlier we discussed Event Wait Handles — a sirsigiealing mechanism where a thread blocks until
it receives notification from another.

A more powerful signaling construct is providedthgMonitor class, via two static methoddMait
andPulse The principle is that you write the signalingilogourself using custom flags and fields

(in conjunction with lock statements), then introdWait andPulsecommands to mitigate CPU
spinning. This advantage of this low-level approectihat with jusWWait, Pulseand thdock

statement, you can achieve the functionality ofoRésetEvent, ManualResetEvent and Semaphore,
as well advaitHandle's static methodgvaitAll andWaitAny . Furthermoreyvait andPulsecan be
amenable in situations where all of the Wait Hag@iee parsimoniously challenged.

A problem withWait andPulseis their poor documentation — particularly witlyaed theireason-
to-be And to make matters worse, éait andPulsemethods have a peculiar aversion to dabblers:
if you call on them without a full understandinigey will know — and will delight in seeking you out
and tormenting you! Fortunately, there is a singga#ern one can follow that provides a fail-safe
solution in every case.

Wait and Pulse Defined

The purpose diVait andPulseis to provide a simple signaling mechanisffait blocks until it
receives notification from another thre&ijlse provides that notification.

Wait must execute befoiRRulsein order for the signal to work. Hulseexecutes first, its pulse is
lost, and the late waiter must wait for a frestspubr remain forever blocked. This differs frora th

58

behavior of an AutoResetEvent, whereSet method has a "latching” effect and so is effedifive
called beforaVaitOne.

One must specify synchronizing objeatvhen callingWait or Pulse. Iftwo threads use the same
object, then they are able to signal each othes.skmchronizing object must be locked prior to
calling Wait or Pulse.

For example, ik has this declaration:

class Test {
/I Any reference-type object will work as a synchro nizing object
object x= new object ();

}
then the following code blocks upon enteriignitor.Wait :
lock (x) Monitor .Wait (x);
The following code (if executed later on anotheeéu) releases the blocked thread:

lock (x) Monitor .Pulse (x);

Lock toggling

To make this workiMonitor.Wait temporarily releases, twgglesthe underlying lock while waiting,
so another thread (such as the one performingulss can obtain it. Th&Vait method can be
thought of as expanding into the following pseudde

Monitor .Exit (X); /I Release the lock
wait for a pulse on x
Monitor .Enter (x); /I Regain the lock

Hence aNait can block twice: once in waiting for a pulse, again in regaining the exclusive lock.
This also means th&ulseby itself does not fully unblock a waitemly when the pulsing thread
exits its lock statemeptain the waiter actually proceed.

Wait's lock toggling is effective regardless of the lowsting level. IWait is called inside two
nestedock statements:

lock (x)

lock (x)
Monitor .Wait (x);

thenWait logically expands into the following:

Monitor .Exit (X); Monitor .Exit (xX); /I Exit twice to release the lock
wait for a pulse on x
Monitor .Enter (x); Monitor .Enter (x); /I Restore previous nesting level

Consistent with normal locking semantics, onlyfirg call toMonitor.Enter affords a blocking
opportunity.

Why the lock?

Why haveWait andPulsebeen designed such that they will only work withitock? The primary
reason is so thaWait can be called conditionally — without compromisthgead-safety. To take a
simple example, suppose we wanWait only if a boolean field calledvailable is false. The
following code is thread-safe:

59

lock (x){
if (lavailable) Monitor .Wait (x);
available = false ;

}

Several threads could run this concurrently, antermould preempt another in between checking the
available field and callingMonitor.Wait . The two statements are effectively atomic. A
corresponding notifier would be similarly threadesa

lock (x)
if (lavailable) {
available = true ;
Monitor .Pulse (x);
}

Specifying a timeout

A timeout can be specified when callinit, either in milliseconds or asTameSpan Wait then
returns false if it gave up because of a timeobé fimeout applies only to the "waiting" phase
(waiting for a pulse): a timed oWait will still subsequently block in order to re-acgithe lock, no
matter how long it takes. Here's an example:

lock (x){
if (! Monitor .Wait (X, TimeSpan .FromSeconds (10)))
Console .WriteLine ("Couldn't wait!");
Console .WriteLine ("But hey, | still have the lock on x!");
}

This rationale for this behavior is that in a wadlsignedVait/Pulseapplication, the object on which
one callswait andPulseis locked just briefly. So re-acquiring the lodiosld be a near-instant
operation.

Pulsing and acknowledgement

An important feature dflonitor.Pulse is that it executes asynchronously, meaning tradesn't
itself block or pause in any way. If another thresadaiting on the pulsed object, it's notified,
otherwise the pulse has no effect and is silegitypred.

Pulseprovides one-way communication: a pulsing thregdads a waiting thread. There is no
intrinsic acknowledgment mechanisRulsedoes not return a value indicating whether oritsot

pulse was received. Furthermore, when a notifiésgauand releases its lock, there's no guarangte th
an eligible waiter will kick into life immediatelyhere can be an arbitrary delay, at the discredfon
the thread scheduler — during which time neithezdt has the lock. This makes it difficult to know
when a waiter has actually resumed, unless thengpiecifically acknowledges, for instance via a
custom flag.

If reliable acknowledgement is required, it muselplicitly coded, usually via a flag in
conjunction with another, reciproc&ulseandWait.

Relying on timely action from a waiter with no cmist acknowledgement mechanism counts as
"messing" withPulseandWait. You'll lose!

60

Waiting queues and PulseAll

More than one thread can simultaneoWlgit upon the same object — in which case a "waiting
queue" forms behind the synchronizing object (ghidistinct from the "ready queue" used for
granting access to a lock). Edehlsethen releases a single thread at the head ofdlingrqueue,
so it can enter the ready-queue and re-acquirthke Think of it like an automatic car park: you
queue first at the pay station to validate youkdiqthe waiting queue); you queue again at thadrar
gate to be let out (the ready queue).

Ready Queue]——

Monitor.Enter Monitor.Exit

(when
scheduled
by CPU)

Pulse "
- — — Waiting Queue

Figure 2: Waiting Queue vs. Ready Queue

The order inherent in the queue structure, howeseaften unimportant iWVait/Pulseapplications,
and in these cases it can be easier to imaginea'pf waiting threads. Each pulse, then, releases
one waiting thread from the pool.

Monitor also provides ulseAll method that releases the entire queue, or poelaiting threads in
a one-fell swoop. The pulsed threads won't alt eecuting exactly at the same time, however, but
rather in an orderly sequence, as each of iNeit statements tries to re-acquire the same lock. In
effect, PulseAll moves threads from the waiting-queue to the repdyue, so they can resume in an
orderly fashion.

How to use Pulse and Wait

Here's how we start. Imagine there are two rules:

- the only synchronization construct available isltuk statement, akslonitor.Enter and
Monitor.Exit

- there are no restrictions on spinning the CPU!

With those rules in mind, let's take a simple exi@m@ worker thread that pauses until it receives
notification from the main thread:

61

class SimpleWaitPulse {
bool go;
object locker = new object ();

void Work() {
Console .Write ("Waiting... ");
lock (locker) { /I Let's spin!
while (1go) {
/I Release the lock so other threads can change the go flag
Monitor .Exit (locker);
/l Regain the lock so we can re-test go in the whil e loop
Monitor .Enter (locker);
}
}

}

void Notify() /I called from another thread

Console .WriteLine ("Notified!");

lock (locker) {
Console .Write ("Notifying... ");
go= true ;
}
}
}

Here's a main method to set things in motion:

static void Main() {
SimpleWaitPulse test= new SimpleWaitPulse ();

/I Run the Work method on its own thread

new Thread (test.Work).Start(); /["Waiting..."
/[Pause for a second, then notify the worker via o ur main thread:
Thread .Sleep (1000);

test.Notify(); /I "Notifying... Notified!"

TheWork method is where we spin — extravagantly consur@iRt time by looping constantly until
thegoflag is true! In this loop we have to keep togglthe lock — releasing and re-acquiring it via
Monitor 's Exit andEnter methods — so that another thread runnind\ibify method can itself get
the lock and modify thgo flag. The sharedo field must always be accessed from within a lack t
avoid volatility issues (remember that all othendyronization constructs, such as the volatile
keyword, are out of bounds in this stage of theghés

The next step is to run this and test that it distueorks. Here's the output from the té4ain
method:

Wiaiting... (pause) Notifying... Notified!

Now we can introduc#/ait andPulse We do this by:
« replacing lock togglingNlonitor.Exit followed byMonitor.Enter) with Monitor.Wait

« inserting a call tavionitor.Pulse when a blocking condition is changed (i.e. glodlag is
modified).

62

Here's the updated class, with thensolestatements omitted for brevity:

class SimpleWaitPulse {
bool go;
object locker = new object ();

void Work() {
lock (locker)
while (!go) Moni t or . Wai t (locker);

void Notify() {
lock (locker) {
go= true ;
Moni t or . Pul se (locker);
}

}
}

The class behaves as it did before, but with thengpg eliminated. Th&Vait command implicitly
performs the code we removedvenitor.Exit followed byMonitor.Exit , but with one extra step in
the middle: while the lock is released, it waits doother thread to caflulse The Notifier method
does just this, after setting tge flag true. The job is done.

Pulse and Wait Generalized

Let's now expand the pattern. In the previous exengur blocking condition involved just one
boolean field — thgo flag. We could, in another scenario, require aditaahal flag set by the

waiting thread to signal that's it's ready or caetgl If we extrapolate by supposing there could be
any number of fields involved in any number of lidiog conditions, the program can be generalized
into the following pseudo-code (in its spinningrfor

class X {
Blocking Fields: one or more objects involved in blocking condition(s), eg
bool go; bool ready; int semaphoreCount; Queue <Task> consumerQ...

object locker = new object (); /I protects all the above fields!

... SomeMethod {

... whenever I want to BLOCK based on the blocking fields:
lock (locker)
while (! blocking fields fo my liking) {
/I Give other threads a chance to change bl ocking fields!
Monitor .Exit (locker);
Monitor .Enter (locker);

... whenever T want to ALTER one or more of the blocking fields:
lock (locker) { alter blocking field(s) }

}
}

We then apply Pulse and Wait as we did before:
« In the waiting loops, lock toggling is replacedwionitor. Wait

« Whenever a blocking condition is changBd]seis called before releasing the lock.

63

Here's the updated pseudo-code:

Wait/Pulse Boilerplate #1: Basic Wait/Pulse Usage

class X{

< Blocking Fields ... >
object locker = new object ();

... SomeMethod {

... whenever I want to BLOCK based on the blocking fields:
lock (locker)

while (! blocking fields to my liking) |
Moni t or. Wai t (locker); :

... whenever I want to ALTER one or more of the blocking fields:
lock (locker) {

alter blocking field(s)
Moni t or . Pul se (locker);

This provides a robust pattern for usivgit andPulse. Here are the key features to this pattern:

- Blocking conditions are implemented using custagids (capable of functioning without
Wait andPulsg albeit with spinning)

- Wait is always called within @hile loop that checks its blocking condition (itselftinwn
alock statement)

« A single synchronization object (in the exampleshtocker) is used for alWaits and
Pulses, and to protect access to all objects involvealliblocking conditions

« Locks are held only briefly

Most importantly, with this pattern, pulsing doex force a waiter to continue. Rather, it notifees
waiter that something has changed, advising ietoheck its blocking condition. The waiter then
determines whether or not it should proceed (vizlzer iteration of itsvhile loop) — and not the
pulser. The benefit of this approach is that &l for sophisticated blocking conditions, without
sophisticated synchronization logic.

Another benefit of this pattern is immunity to thigects of a missed pulse. A missed pulse happens
whenPulseis called befor&Vait — perhaps due to a race between the notifier aiiedmBut

because in this pattern a pulse means "re-cheakbjocking condition" (and not "continue"), an
early pulse can safely be ignored since the blackondition is always checked before calling Wait,
thanks to thevhile statement.

With this design, one can define multiple blockfiedds, and have them partake in multiple

blocking conditions, and yet still use a single@ymnization object throughout (in our example,
locker). This is usually better than having separate lssorization objects on which tock, Pulse
andWait, in that one avoids the possibility of deadlockttRermore, with a single locking object,

all blocking fields are read and written to as d,avoiding subtle atomicity errors. It's a godea,
however, not to use the synchronization objecptoposes outside of the necessary scope (this can
be assisted by declaripgivate the synchronization object, as well as all blogkiields).

64

Producer/Consumer Queue

A simpleWait/Pulseapplication is a producer-consumer queue — theetsire we wrote earlier
using anAutoResetEvent A producer enqueues tasks (typically on the rtai@ad), while one or
more consumers running on worker threads pick rdif @éxecute the tasks one by one.

In this example, we'll use a string to represetais. Our task queue then looks like this:
Queue<string >taskQ = new Queue<string >();

Because the queue will be used on multiple threadsnust wrap all statements that read or write to
the queue in bck. Here's how we enqueue a task:

lock (locker) {
taskQ.Enqueue ("my task");
Monitor .PulseAll (locker); /I We're altering a blocking condition
}

Because we're modifying a potential blocking canditwe must pulse. We cdtulseAll rather than
Pulsebecause we're going to allow for multiple consisnbftore than one thread may be waiting.

We want the workers to block while there's nothtimglo, in other words, when there are no items on
the queue. Hence our blocking conditiomaskQ.Count==0 Here's aVait statement that performs
exactly this:

lock (locker)
while (taskQ.Count == 0) Monitor .Wait (locker);

The next step is for the worker to dequeue the aaskexecute it:

lock (locker)
while (taskQ.Count == 0) Monitor .Wait (locker);

string task;
lock (locker)
task = taskQ.Dequeue();

This logic, however, is not thread-safe: we've hhgsi decision to dequeue upon stale information —
obtained in a priolock statement. Consider what would happen if we stdrt® consumer threads
concurrently, with a single item already on thewgudt's possible that neither thread would ertter t
while loop to block — both seeing a single item on thewe. They'd both then attempt to dequeue the
same item, throwing an exception in the secondircgt! To fix this, we simply hold tHeck a bit

longer — until we've finished interacting with theeue:

string task;
lock (locker) {

while (taskQ.Count == 0) Monitor .Wait (locker);
task = taskQ.Dequeue();

}

(We don't need to caltulseafter dequeuing, as no consumer can ever unbltkdoe being fewer
items on the queue).

Once the task is dequeued, there's no furthernegent to keep the lock. Releasing it at this point
allows the consumer to perform a possibly time-oamag task without unnecessary blocking other
threads.

65

Here's the complete program. As with the AutoRegaEversion, we enqueue a null task to signal a
consumer to exit (after finishing any outstandiasks). Because we're supporting multiple
consumers, we must enqueue one null task per cardormompletely shut down the queue:

Wait/Pulse Boilerplate #2: Producer/Consumer Queue

using System;
using System.Threading;
using System.Collections.Generic;

public class TaskQueue : IDisposable {
object locker = new object ();

Thread [] workers;

Queue<string >taskQ = new Queue<string >();

public TaskQueue (int workerCount) {
workers = new Thread [workerCount];

/I Create and start a separate thread for each work er
for (int i=0;i<workerCount; i++)
(workers [i] = new Thread (Consume)).Start();

public void Dispose() {
/I Enqueue one null task per worker to make each ex it.
foreach (Thread worker in workers) EnqueueTask (null);
foreach (Thread worker in workers) worker.Join();

public void EnqueueTask (string task) {
lock (locker) {
taskQ.Enqueue (task);
Moni t or . Pul seAl | (locker);

void Consume() {
while (true){
string task;
lock (locker) {
while (taskQ.Count == 0) Moni t or . Wi t (locker);
task = taskQ.Dequeue();

if (task == null) return ; /I This signals our exit

Console .Write (task);
Thread .Sleep (1000); /I Simulate time-consuming task

Here's aMain method that starts a task queue, specifying tvmecwwent consumer threads, and then
enqueues ten tasks to be shared amongst the twaroers:

66

static void Main() {
using (TaskQueue g= new TaskQueue (2)) {
for (int i=0;i<10;i++)

g.EnqueueTask ("Task" +i);
Console .WriteLine ("Enqueued 10 tasks");
Console .WriteLine ("Waiting for tasks to complete...");
/I Exiting the using statement runs TaskQueue's Dis pose method,
/I which shuts down the consumers, after all outsta nding tasks
/I have completed.
Console .WriteLine ("\"\nAll tasks done!");

}

Enqueued 10 tasks
Waiting for tasks to complete...
Taskl Task0 (pause...) Task2 Task3 (pause...) Task4 Task5 (pause...)

Task6 Task7 (pause...) Task8 Task9 (pause...)
All tasks done!

Consistent with our design pattern, if we remBugseAll and replac&Vait with lock toggling, we'll
get the same output.

Pulse Economy

Let's revisit the producer enqueuing a task:

lock (locker) {
taskQ.Enqueue (task);
Monitor .PulseAll (locker);
}

Strictly speaking, we could economize by pulsintyavhen there's a possibility of a freeing a
blocked worker:

lock (locker) {

taskQ.Enqueue (task);

if (taskQ.Count <= workers.Length) Monitor .PulseAll (locker);
}

We'd be saving very little, though, since pulsipgjcally takes under a microsecond, and incurs no
overhead on busy workers — since they ignore iwayy It's a good policy with multi-threaded code
to cull any unnecessary logic: an intermittent dug to a silly mistake is a heavy price to payafor
one-microsecond saving! To demonstrate, this i albuld take to introduce an intermittent "stuck
worker" bug that would most likely evade initiabteg (spot the difference):

lock (locker) {
taskQ.Enqueue (task);

if (taskQ.Count < workers.Length) Monitor .PulseAll (locker);
}

Pulsing unconditionally protects us from this typéoug.

If in doubt,Pulse Rarely can you go wrong by pulsing, within thesiyn pattern. I

67

Pulse or PulseAll?

This example comes with further pulse economy p@kefter enqueuing a task, we could call
Pulseinstead oPulseAll and nothing would break.

Let's recap the difference: wiktulse a maximum of one thread can awake (and re-chigaitile-

loop blocking condition); witlPulseAll, all waiting threads will awake (and re-check th#ocking
conditions). If we're enqueing a single task, amg worker can handle it, so we need only wake up
one worker with a singlBulse It's rather like having a class of sleeping ataid— if there's just one
ice-cream there's no point in waking them all tewgifor it!

In our example we start only two consumer threadsye would have little to gain. But if we started
ten consumers, we might benefit slightly in chog$mlse overPulseAll. It would mean, though,
that if we enqueued multiple tasks, we would nedéulse multiple times. This can be done within a
singlelock statement, as follows:

lock (locker) {

taskQ.Enqueue ("task 1");

taskQ.Enqueue ("task 2"),
Monitor .Pulse (locker); /l "Signal up to two
Monitor .Pulse (locker); /I waiting threads."

}

The price of on€ulsetoo few is a stuck worker. This will usually massf as an intermittent bug,
because it will crop up only when a consumer iaWaiting state. Hence one could extend the
previous maxim "if in doub®ulsé’, to "if in doubt,PulseAll!"

A possible exception to the rule might arise iflaating the blocking condition was unusually time-
consuming.

Using Wait Timeouts

Sometimes it may be unreasonable or impossibRutsewhenever an unblocking condition arises.
An example might be if a blocking condition invadvealling a method that derives information from
periodically querying a database. If latency isamissue, the solution is simple: one can specify
timeout when callinyVait, as follows:

lock (locker) {
while (blocking condition)
Monitor .Wait (locker, timeout);

This forces the blocking condition to be re-cheglad minimum, at a regular interval specified by
the timeout, as well as immediately upon receiammulse. The simpler the blocking condition, the
smaller the timeout can be without causing ineficiy.

The same system works equally well if the pulsgbisent due to a bug in the program! It can be
worth adding a timeout to alVait commands in programs where synchronization isquaatly
complex — as an ultimate backup for obscure pulsingrs. It also provides a degree of bug-
immunity if the program is modified later by somearot on thé?ulse

Races and Acknowledgement

Let's say we want a signal a worker five times row:

68

class Race {
static object locker = new object ();
static bool go;

static void Main() {
new Thread (SaySomething).Start();

for (int 1=0;i<5;i++){
lock (locker) {go= true ; Monitor .Pulse (locker);}

static void SaySomething() {
for (int i=0;i<5;i++){
lock (locker) {
while (!go) Monitor .Wait (locker);
go = false

}

}
}
}

Expected Output:

Console .WriteLine ("Wassup?");

Wassup?
Wassup?
Wassup?
Wassup?
Wassup?

Actual Output:

Wassup?
(hangs)

This program is flawed: thfer loop in the main thread can free-wheel right tigioits five iterations
any time the worker doesn't hold the lock. Posdilglfore the worker even starts! The
Producer/Consumer example didn't suffer from thiblem because if the main thread got ahead of
the worker, each request would simply queue up.imBthis case, we need the main thread to block at
each iteration if the worker's still busy with &wpious task.

A simple solution is for the main thread to wateafeach cycle until thgo flag is cleared by the
worker. This, then, requires that the worker Ballseafter clearing thgo flag:

69

class Acknowledged {
static object locker = new object ();
static bool go;

static void Main() {
new Thread (SaySomething).Start();

for (int i=0;i<b5;i++){
lock (locker) {go = true ; Monitor. Pul se (locker); }
lock (locker) { while (go) Monitor. Wit (locker);}

static void SaySomething() {
for (int i=0;i<5;i++){
lock (locker) {
while (!go) Moni t or . Wai t (locker);
go = false ; Mbnitor. Pul se (locker); /' Worker must Pulse

Console .WriteLine ("Wassup?");
}
}
}

Wassup? (repeated five times)

An important feature of such a program is thatvileeker releases its lock before performing its
potentially time-consuming job (this would happarplace of where we're calling
Console.WriteLine). This ensures the instigator is not unduly blackénile the worker performs the
task for which it has been signaled (and is bloaielg if the worker is busy with a previous task).

In this example, only one thread (the main threaghals the worker to perform a task. If multiple
threads were to signal the worker — usingMain method's logic — we would come unstuck. Two
signaling threads could each execute the follovimgyof code in sequence:

lock (locker) {go = true ; Monitor .Pulse (locker); }

resulting in the second signal being lost if thekeo didn't happen to have finish processing tres.fi
We can make our design robust in this scenariosinygua pair of flags — a "ready" flag as well as a
"go" flag. The "ready" flag indicates that the werks able to accept a fresh task; the "go" flagnis
instruction to proceed, as before. This is analsgowa previous example that performed the same
thing using twoAutoResetEvens, except more extensible. Here's the patteractafed with
instance fields:

70

Wait/Pulse Boilerplate #3: Two-way Signaling

public class Acknowledged {
object locker = new object ();
bool ready;
bool go;

public void NotifyWhenReady() {
lock (locker) {

/I Wait if the worker's already busy with a previou s job
while (Iready) Monitor .Wait (locker);

ready = false ;

go= true ;

Monitor .PulseAll (locker);

public void AcknowledgedWait() {
/I Indicate that we're ready to process a request
lock (locker) { ready = true ; Monitor .Pulse (locker);}

lock (locker) {

while (!go) Monitor .Wait (locker); /I Wait for a "go" signal
go = false ; Monitor .PulseAll (locker); /I Acknowledge signal
}
Console .WriteLine ("Wassup?"); /I Perform task
}
}

To demonstrate, we'll start two concurrent threadsh that will notify the worker five times.

Meanwhile, the main thread will wait for ten natdtions:

public class Test {
static Acknowledged a= new Acknowledged ();

static void Main() {

new Thread (Notify5).Start(); /I Run two concurrent
new Thread (Notify5).Start(); /I natifiers...
Wait10(); /... and one waiter.

static void Notify5() {
for (int i=0;i<5;i++)
a.NotifyWhenReady();
}

static void Wait10() {
for (int i=0;i<10;i++)
a.AcknowledgedWait();
}
}

Wassup?
Wassup?
Wassup?

(repeated ten times)

71

In theNotify method, theeady flag is cleared before exiting theck statement. This is vitally
important: it prevents two notifiers signaling segtially without re-checking the flag. For the sake
of simplicity, we also set thgo flag and calPulseAll in the saméock statement — although we
could just as well put this pair of statements Beparatéock and nothing would break.

Simulating Wait Handles

You might have noticed a pattern in the previouanaple: both waiting loops have the following
structure:

lock (locker) {
while (! flag) Monitor .Wait (locker);
flag = false ;

S

whereflag is set tarue in another thread. This is, in effect, mimicking&utoResetEvent. If we

omittedflag=false we'd then have a ManualResetEvent. Using anentiégld, PulseandWait can
also be used to mimic a Semaphore. In fact the Wi Handle we can't mimic witRulseand
Wait is a Mutex, since this functionality is provideg thelock statement.

Simulating the static methods that work across ipieltWait Handles is in most cases easy. The
equivalent of calling WaitAll across multipleventWaitHandles is nothing more than a blocking
condition that incorporates all the flags usedlace of the Wait Handles:

lock (locker) {
while (flagl && !'flag2 && !flag3...) Monitor .Wait (locker);

This can be particularly useful given tiaaitAll is in most cases unusable due to COM legacy
issues. SimulatingvaitAny is simply a matter of replacing t8& operator with th¢| operator.

SignalAndWait is trickier. Recall that this method signals omaadie while waiting on another in an
atomic operation. We have a situation analogowsdistributed database transaction — we need a
two-phase commit! Assuming we wanted to sigteA while waiting onflagB, we'd have to divide
each flag into two, resulting in code that mighddksomething like this:

lock (locker) {
flagAphasel = true ;
Monitor .Pulse (locker);
while (/flagBphasel) Monitor .Wait (locker);

flagAphase?2 = true ;
Monitor .Pulse (locker);
while (IflagBphase?2) Monitor .Wait (locker);

}

perhaps with additional "rollback" logic to retrdleigAphaselif the firstWait statement threw an
exception as a result of being interrupted or aabrThis is one situation where Wait Handles are
way easier! True atomic signal-and-waiting, howeisactually an unusual requirement.

72

Wait Rendezvous

Just as WaitHandle.SignalAndWait can be used tdearous a pair of threads, so &dait and
Pulse In the following example, one could say we sineilavoManualResetEvens (in other
words, we define two boolean flags!) and then penfeeciprocal signal-and-waiting by setting one
flag while waiting for the other. In this case wand need true atomicity in signal-and-waiting,cem
avoid the need for a "two-phase commit". As longvasset our flag true and Wait in the sdek
statement, the rendezvous will work:

class Rendezvous {
static object locker = new object ();
static bool signall, signal2;

static void Main() {
/I Get each thread to sleep a random amount of time
Randomr= new Random();
new Thread (Mate).Start (r.Next (10000));
Thread .Sleep (r.Next (10000));

lock (locker) {

signall = true ;
Moni t or . Pul se (locker);
while (Isignal2) Moni t or . Wi t (locker);
}

Console .Write ("Mate! ");

}

/I This is called via a ParameterizedThreadStart
static void Mate (object delay){
Thread .Sleep ((int) delay);
lock (locker) {
signal2 = true ;
Moni t or . Pul se (locker);
while (Isignall) Moni t or . Wi t (locker);
}
Console .Write ("Mate! ");
}
}

Mate! Mate! (almost in unison)

Wait and Pulse vs. Wait Handles

Becausé&Vait andPulseare the most flexible of the synchronization cargs, they can be used in
almost any situation. Wait Handles, however, hax@advantages:

- they have the capability of working across multiptecesses
- they are simpler to understand, and harder to break

Additionally, Wait Handles are more interoperalvi¢tie sense that they can be passed around via
method arguments. bhread pooling this technique is usefully employed.

In terms of performancéVyait andPulsehave a slight edge, if one follows the suggestsigt
pattern for waiting, that is:

lock (locker)
while (blocking condition) Monitor .Wait (locker);

73

and the blocking condition happens to false froedhtset. The only overhead then incurred is that
of taking out the lock (tens of nanoseconds) vetisagew microseconds it would take to call
WaitHandle.WaitOne. Of course, this assumes the lock is uncontenelesh the briefest lock
contention would be more than enough to even thoagisfrequent lock contention would make a
Wait Handle faster!

Given the potential for variation through differé&®Us, operating systems, CLR versions, ard
program logic; and that in any case a few microsdsas unlikely to be of any consequence
before aWait statement, performance may be a dubious reasthottsé/Nait andPulseover
Wait Handles, or vice versa.

A sensible guideline is to use a Wait Handle wizeparticular construct lends itself naturally te th
job, otherwise us&/ait andPulse

Suspend and Resume

A thread can be explicitly suspended and resumethe method$hread.Suspendand
Thread.Resume This mechanism is completely separate to thatamking discussed previously.
Both systems are independent and operate in paralle

A thread can suspend itself or another threadir@gguspendresults in the thread briefly entering
the SuspendRequestedtate, then upon reaching a point safe for garbaljection, it enters the
Suspendedstate. From there, it can be resumed only viahemndhread that calls iBesumemethod.
Resumewill work only on a suspended thread, not a bloclkeead.

From .NET 2.0SuspendandResumehave been deprecated, their use discouraged leechtise
danger inherent in arbitrarily suspending anothezad. If a thread holding a lock on a critical
resource is suspended, the whole application (@mpcter) can deadlock. This is far more dangerous
than calling Abort — which would result in any suobks being released — at least theoretically — by
virtue of code irfinally blocks.

It is, however, safe to caluspendon the current thread — and in doing so one cateiment a

simple synchronization mechanism — with a workeedl in a loop — performing a task, calling
Suspendon itself, then waiting to be resumed (“woken uip)the main thread when another task is
ready. The difficulty, though, is in testing whetloe not the worker is suspended. Consider the
following code:

worker.NextTask = "MowTheLawn" ;
if ((worker.ThreadState & ThreadState .Suspended) > 0)
worker.Resume;
else
/l We cannot call Resume as the thread's already ru nning.
/I Signal the worker with a flag instead:
worker.AnotherTaskAwaits = true ;

This is horribly thread-unsafe — the code coulgtsempted at any point in these five lines — during
which the worker could march on in and changetétes While it can be worked around, the solution
is more complex than the alternative — using alsygrization construct such as an AutoResetEvent
or Monitor.Wait. This makeSuspendandResumeuseless on all counts.

The deprecateBuspendandResumemethods have two modes — dangerous and useliss!

74

Aborting Threads

A thread can be ended forcibly via tAbort method:

class Abort {
static void Main() {

Thread t= new Thread (delegate (){ while (true);}); /I Spin forever
t.Start();

Thread .Sleep (1000); /I Let it run for a second...
t. Abor t (); /I then abort it.

}
}

The thread upon being aborted immediately enterdltlortRequestedstate. If it then terminates as
expected, it goes into ttf&toppedstate. The caller can wait for this to happen dilirgy Join:

class Abort {
static void Main() {
Thread t= new Thread (delegate (){ while (true);});

Console .WriteLine (t. ThreadState); /I Unstarted
t. Start();
Thread .Sleep (1000);
Console .WriteLine (t. ThreadState); /I Running
t. Abor t ();
Console .WriteLine (t. ThreadState); /I AbortRequested
t. Joi n();
Console .WriteLine (t. ThreadState); Il Stopped
}
}

Abort causes @hreadAbortException to be thrown on the target thread, in most cagés where
the thread's executing at the time. The threadgbeiiorted can choose to handle the exception, but
the exception then gets automatically re-throwthatend of theatch block (to help ensure the
thread, indeed, ends as expected). It is, howpwssible to prevent the automatic re-throw by cglli
Thread.ResetAbortwithin thecatch block. Then thread then re-enters Ehenning state (from

which it can potentially bebarted again). In the following example, the worker tltemmes back
from the dead each time &Mort is attempted:

class Terminator {
static void Main() {
Thread t= new Thread (Work);
t.Start();
Thread .Sleep (1000); t.Abort();
Thread .Sleep (1000); t.Abort();
Thread .Sleep (1000); t.Abort();
}

static void Work() {
while (true){
try { while (true);}
catch (ThreadAbort Exception){ Thread . Reset Abort();}
Console .WriteLine ("l will not die!");

75

ThreadAbortException is treated specially by the runtime, in that iegia't cause the whole
application to terminate if unhandled, unlike aher types of exception.

Abort will work on a thread in almost any state — rugniblocked, suspended, or stopped. However
if a suspended thread is aborted haeadStateExceptionis thrown — this time on the calling thread
— and the abortion doesn't kick off until the tlréasubsequently resumed. Here's how to abort a
suspended thread:

try {suspendedThread.Abort(); }
catch (ThreadStateException) { suspendedThread.Resume(); }
/I Now the suspendedThread will abort.

Complications with Thread.Abort

Assuming an aborted thread doesn't BalsetAbort, one might expect it to terminate fairly quickly.
But as it happens, with a good lawyer the threag ramain on death row for quite some time! Here
are a few factors that may keep it lingering in AfrtRequestedstate:

- Static class constructors are never aborted parttvaugh (so as not to potentially
poison the class for the remaining life of the >lon domain)

« All catch/finally blocks are honored, and never radbd mid-stream

- If the thread is executing unmanaged code whentethoexecution continues until the
next managed code statement is reached

The last factor can be particularly troublesomehat the .NET framework itself often calls
unmanaged code, sometimes remaining there forperigds of time. An example might be when
using a networking or database class. If the nétwasource or database server dies or is slow to
respond, it's possible that execution could rereatirely within unmanaged code, for perhaps
minutes, depending on the implementation of thesclln these cases, one certainly wouldn't want to
Join the aborted thread — at least not withouthadut!

Aborting pure .NET code is less problematic, aglastry/finally blocks orusing statements are
incorporated to ensure proper cleanup takes plamald aThreadAbortException be thrown.
However, even then, one can still be vulnerableatsty surprises. For example, consider the
following:

using (StreamWriter w = File .CreateText("myfile.txt")
w.Write ("Abort-Safe?");

C#'susing statement is simply a syntactic shortcut, whicthia case expands to the following:

StreamWriter w;

w = File .CreateText ("myfile.txt");
try { w.Write ("Abort-Safe");}
finally { w.Dispose(); }

It's possible for ar\bort to fire after theStreamWriter is created, but before thiy block begins.
In fact, by digging into the IL, one can see thatalso possible for it to fire in between the
StreamWriter being created and assignedvo

IL_0001: Idstr "myfile.txt"

IL_0006: call class [mscorlib]System.lO.Stre amWriter
[mscorlib]System.lO.File::Crea teText(string)

IL_000b: stloc.0

Ary

{
76

Either way, theDisposemethod in thdinally block is circumvented, resulting in an abandongeho
file handle — preventing any subsequent attemptsaatemyfile.txt until the application domain
ends.

In reality, the situation in this example is wos$dl, because aAbort would most likely take place
within the implementation dfile.CreateText This is referred to as opaque code — that whieh w
don't have the source. Fortunately, .NET code veneuly opaque: we can again wheel in ILDASM,
or better still, Lutz Roeder's Reflector — and liogkinto the framework's assemblies, see thatls ca
StreamWriter' s constructor, which has the following logic:

public StreamWriter (string path, bool append, ...
{

Stream stream1 = StreamWriter.CreateFile (path, a ppend);
this .Init (stream1, ...);

}

Nowhere in this constructor is therér@/catch block, meaning that if thAbort fires anywhere
within the (non-trivial)init method, the newly created stream will be abandonéd no way of
closing the underlying file handle.

Because disassembling every required CLR callv#oolsly impractical, this raises the question on
how one should go about writing an abort-friendigthod. The most common workaround is not to
abort another thread at all — but rather add sooustoolean field to the worker's class, signalhmg t
it should abort. The worker checks the flag pegatly, exiting gracefully if true. Ironically, theost
graceful exit for the worker is by callirgport on its own thread — although explicitly throwing an
exception also works well. This ensures the thseslaacked right out, while executing any
catch/finally blocks — rather like callingbort from another thread, except the exception is throw
only from designated places:

class ProLife {
public static void Main() {
RulyWorker w = new RulyWorker ();
Thread t= new Thread (w.Work);
t.Start();
Thread .Sleep (500);
w.Abort();

}

i

public class RulyWorker {

/I The volatile keyword ensures abort is not cached by a thread
volatile bool abort;
public void Abort() { abort = true ;}

public void Work() {
while (true){
CheckAbort ();

/I Do stuff...
try { OtherMethod(); }
finally { [*any required cleanup */ }
}
}
void OtherMethod() {
/I Do stuff...
CheckAbor t ();
}
void CheckAbort() { i f (abort) Thread. Current Thread. Abort();}
}
}

Calling Abort on one's own thread is one circumstance in wAlotrt is totally safe. Another
is when you can be certain the thread you're atgpi$iin a particular section of code, usually
by virtue of a synchronization mechanism such A Handle or Monitor.Wait. A third
instance in which callingdbort is safe is when you subsequently tear down treattis
application domain or process.

Ending Application Domains

Another way to implement an abort-friendly workeibly having its thread run in its own application
domain. After callingAbort, one simply tears down the application domain;gby releasing any
resources that were improperly disposed.

Strictly speaking, the first step — aborting theettd — is unnecessary, because when an application
domain is unloaded, all threads executing codaahdomain are automatically aborted. However,
the disadvantage of relying on this behavior is thidne aborted threads don't exit in a timelyhias
(perhaps due to codefimally blocks, or for other reasons discussed previodbkb/application
domain will not unload, and@annotUnloadAppDomainExceptionwill be thrown on the caller.

For this reason, it's better to explicitly abow thorker thread, then call Join with some timeowe(
which you have control) before unloading the aggtion domain.

In the following example, the worker enters anriité loop, creating and closing a file using the
abort-unsafé-ile.CreateText method. The main thread then repeatedly start@bods workers. It
usually fails within one or two iterations, wi@reateText getting aborted part way through its
internal implementation, leaving behind an abandaen file handle:

78

using System;
using System.lO;
using System.Threading;

class Program {
static void Main() {
while (true){
Thread t= new Thread (Work);

t.Start();
Thread .Sleep (100);
t.Abort();
Console .WriteLine ("Aborted");
}
}

static void Work() {
while (true)

using (StreamWriter w= File .CreateText ("myfile.txt" N{}
}
}
Aborted
Aborted
IOException: The process cannot access the file 'my file.txt' because it
is being used by another process.

Here's the same program modified so the workeathrens in its own application domain, which is
unloaded after the thread is aborted. It runs pegtlg without error, because unloading the
application domain releases the abandoned filelaand

class Program {
static void Main (string []args){
while (true){
AppDomain ad = AppDonai n. Cr eat eDonmai n ("worker");
Thread t= new Thread (delegate () {ad.DoCallBack (Work);});

t.Start();
Thread .Sleep (100);
t.Abort();
if ('t.Join (2000)) {
/l Thread won't end - here's where we could take fu rther action,
/I if, indeed, there was anything we could do. Fort unately in
/I this case, we can expect the thread *always* to end.
}
AppDomai n. Unl oad (ad); /I Tear down the polluted domain!
Console .WriteLine ("Aborted"),
}
}

static void Work() {
while (true)
using (StreamWriter w= File .CreateText ("myfile.txt" N{}
}
}

Aborted
Aborted
Aborted
Aborted

79

Creating and destroying an application domainassgd as relatively time-consuming in the world of
threading activities (taking a few milliseconds)it®something conducive to being done irregularly
rather than in a loop! Also, the separation intitliby the application domain introduces another
element that can be either of benefit or detrimeepending on what the multi-threaded program is
setting out to achieve. In a unit-testing contéxt,nstance, running threads on separate appiicati
domains can be of great benefit.

Ending Processes

Another way in which a thread can end is when #remt process terminates. One example of this is
when a worker thread's IsBackground property iscs&ue, and the main thread finishes while the
worker is still running. The background threadmalble to keep the application alive, and so the
process terminates, taking the background thretditvi

When a thread terminates because of its parenegspi stops dead, and fivwally blocks are
executed.

The same situation arises when a user terminataarasponsive application via the Windows Task
Manager, or a process is killed programmaticaléyRiiocess.Kill

Think in LINQ

Use LINQPad to interactively query your
databases, and within a week, you'll be
thinking in LINQ!

Written by the author of this article,
and packed with more than 200
samples.

Free!

www.lingpad.net

© 2006-2009 Joseph Albahari & O'Reilly Media, 1Adl. rights reserved

80

